首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 ± 4.16 and 41.17 ± 2.34 μmol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.  相似文献   

2.
Pal D  Nayak AK 《AAPS PharmSciTech》2011,12(4):1431-1441
The purpose of this work was to develop and optimize gliclazide-loaded alginate–methyl cellulose mucoadhesive microcapsules by ionotropic gelation using central composite design. The effect of formulation parameters like polymer blend ratio and cross-linker (CaCl2) concentration on properties of gliclazide-loaded alginate–methyl cellulose microcapsules like drug encapsulation efficiency and drug release were optimized. The optimized microcapsules were subjected to swelling, mucoadhesive, and in vivo studies. The observed responses coincided well with the predicted values from the optimization technique. The optimized microcapsules showed high drug encapsulation efficiency (83.57 ± 2.59% to 85.52 ± 3.07%) with low T 50% (time for 50% drug release, 5.68 ± 0.09 to 5.83 ± 0.11 h). The in vitro drug release pattern from optimized microcapsules was found to be controlled-release pattern (zero order) with case II transport release mechanism. Particle sizes of these optimized microcapsules were 0.767 ± 0.085 to 0.937 ± 0.086 mm. These microcapsules also exhibited good mucoadhesive properties. The in vivo studies on alloxan-induced diabetic rats indicated the significant hypoglycemic effect that was observed 12 h after oral administration of optimized mucoadhesive microcapsules. The developed and optimized alginate–methyl cellulose microcapsules are suitable for prolonged systemic absorption of gliclazide to maintain lower blood glucose level and improved patient compliance.  相似文献   

3.
The aim of the investigation was to prepare and characterize wheat germ agglutinin(WGA)-conjugated poly(d,l-lactic-co-glycolic) acid nanoparticles encapsulating mometasone furoate (MF) as a model drug and assess changes in its fate in terms of cellular interactions. MF loaded nanoparticles were prepared using emulsion–solvent evaporation technique. WGA-conjugation was done by carbodiimide coupling method. The nanoparticles were characterized for size, zeta potential, entrapment efficiency and in-vitro drug release. The intracellular uptake of nanoparticles, drug cellular levels, and anti-proliferative activity studies of wheat germ agglutinin-conjugated and unconjugated nanoparticles were assessed on alveolar epithelial (A549) cells to establish cellular interactions. Prepared nanoparticles were spherical with 10–15 μg/mg of WGA conjugated on nanoparticles. The size of nanoparticles increased after conjugation and drug entrapment and zeta potential reduced from 78 ± 5.5% to 60 ± 2.5% and −15.3 ± 1.9 to −2.59 ± 2.1 mV respectively after conjugation. From the cellular drug concentration–time plot, AUC was found to be 0.4745, 0.6791 and 1.24 for MF, MF-nanoparticles and wheat germ agglutinin-MF-nanoparticles respectively. The in-vitro antiproliferative activity was improved and prolonged significantly after wheat germ agglutinin-conjugation. The results conclusively demonstrate improved availability and efficacy of antiasthmatic drug in alveolar epithelial cell lines. Hence, a drug once formulated as mucoadhesive nanoparticles and incorporated in dry powder inhaler formulation may be used for targeting any segment of lungs for more improved therapeutic response in other lung disorders as well.  相似文献   

4.
The purpose of this research was to prepare and evaluate sustained release mucoadhesive tablets of Itraconazole. It is practically insoluble in aqueous fluids hence its solid dispersion with Eudragit E100 was prepared by spray drying. This was formulated in matrix of hydrophilic mucoadhesive polymers Carbopol 934P (CP) and Methocel K4M (HPMC). The formulation was optimized using a 32 factorial design. Amounts of CP and HPMC were taken as formulation variables for optimizing response variables i.e. mucoadhesion and dissolution parameters. The optimized mucoadhesive formulation was orally administered to albino rabbits, and blood samples collected were used to determine pharmacokinetic parameters. The solid dispersion markedly enhanced the dissolution rate of itraconazole. The bioadhesive strength of formulation was found to vary linearly with increasing amount of both polymers. Formulations exhibited drug release fitting Peppas model with value of n ranging from 0.61 to 1.18. Optimum combination of polymers was arrived at which provided adequate bioadhesive strength and fairly regulated release profile. The experimental and predicted results for optimum formulations were found to be in close agreement. The formulation showed C max 1898 ± 75.23 ng/ml, t max of the formulation was 2 h and AUC was observed to be 28604.9 ng h/ml  相似文献   

5.
The present investigation was aimed at developing cytarabine-loaded poly(lactide-coglycolide) (PLGA)-based biodegradable nanoparticles by a modified nanoprecipitation which would have sustained release of the drug. Nine batches were prepared as per 32 factorial design to optimize volume of the co-solvent (0.22–0.37 ml) and volume of non-solvent (1.7–3.0 ml). A second 32 factorial design was used for optimization of drug: polymer ratio (1:5) and stirring time (30 min) based on the two responses, mean particle size (125 ± 2.5 nm), and percentage entrapment efficiency (21.8 ± 2.0%) of the Cyt-PLGA nanoparticles. Optimized formulation showed a zeta potential of −29.7 mV indicating good stability; 50% w/w of sucrose in Cyt-PLGA NP was added successfully as cryoprotectant during lyophilization for freeze-dried NPs and showed good dispersibility with minimum increase in their mean particle sizes. The DSC thermograms concluded that in the prepared PLGA NP, the drug was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. In vitro drug release from the pure drug was complete within 2 h, but was sustained up to 24 h from PLGA nanoparticles with Fickian diffusion. Stability studies showed that the developed PLGA NPs should be stored in the freeze-dried state at 2–8°C where they would remain stable in terms of both mean particle size and drug content for 2 months.  相似文献   

6.
Water dispersible zinc sulfide quantum dots (ZnS QDs) with an average diameter of 2.9 nm were synthesized in an environment friendly method using chitosan as stabilizing agent. These nanocrystals displayed characteristic absorption and emission spectra having an absorbance edge at 300 nm and emission maxima (λ emission) at 427 nm. Citrate-capped silver nanoparticles (Ag NPs) of ca. 37-nm diameter were prepared by modified Turkevich process. The fluorescence of ZnS QDs was significantly quenched in presence of Ag NPs in a concentration-dependent manner with K sv value of 9 × 109 M−1. The quenching mechanism was analyzed using Stern–Volmer plot which indicated mixed nature of quenching. Static mechanism was evident from the formation of electrostatic complex between positively charged ZnS QDs and negatively charged Ag NPs as confirmed by absorbance study. Due to excellent overlap between ZnS QDs emission and surface plasmon resonance band of Ag NPs, the role of energy transfer process as an additional quenching mechanism was investigated by time-resolved fluorescence measurements. Time-correlated single-photon counting study demonstrated decrease in average lifetime of ZnS QDs fluorescence in presence of Ag NPs. The corresponding F?rster distance for the present QD–NP pair was calculated to be 18.4 nm.  相似文献   

7.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   

8.
The present work is focused on the development of thiolated film for fluconazole buccal delivery. To this end, unmodified polymers chitosan and sodium carboxymethylcellulose (NaCMC) backbone was covalently modified by thioglycolic acid (TGA) and cysteine, respectively. The thiolated buccoadhesive film was evaluated in terms of thickness, weight uniformity, water-uptake capacity, drug content, and release patterns. Moreover, mucoadhesion profile was investigated on buccal mucosa. The resulting chitosan–TGA and NaCMC–cysteine conjugates displayed 171?±?13 and 380?±?19 μmol thiol groups per gram of polymer (mean?±?SD; n?=?3), respectively. The water binding capacity of the thiolated film was significantly ~2-fold higher (p?<?0.05) as compared to unmodified film. The obtained thiolated film displayed 5.8-fold higher mucoadhesive properties compared with corresponding film. Controlled release of drugs from film was observed over 8 h. The transport of fluconazole across excised buccal mucosa was enhanced up to 17-fold in comparison with fluconazole applied in buffer. Based on these findings, thiolated film seems to be promising for fluconazole buccal delivery.  相似文献   

9.
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.  相似文献   

10.
α-l-Rhamnosidase from Aspergillus terreus was covalently immobilized on the following ferromagnetic supports: polyethylene terephthalate (Dacron-hydrazide), polysiloxane/polyvinyl alcohol (POS/PVA), and chitosan. The powdered supports were magnetized by thermal coprecipitation method using ferric and ferrous chlorides, and the immobilization was carried out via glutaraldehyde. The activity of the Dacron-hydrazide (0.53 nkat/μg of protein) and POS/PVA (0.59 nkat/μg of protein) immobilized enzyme was significantly higher than that found for the chitosan derivative (0.06 nkat/μg of protein). The activity–pH and activity–temperature profiles for all immobilized enzymes did not show difference compared to the free enzyme, except the chitosan derivative that presented higher maximum temperature at 65 °C. The Dacron-hydrazide derivative thermal stability showed a similar behavior of the free enzyme in the temperature range of 40–70 °C. The POS/PVA and chitosan derivatives were stable up to 60 °C, but were completely inactivated at 70 °C. The activity of the preparations did not appreciably decrease after ten successive reuses. Apparent K m of α-l-rhamnosidase immobilized on magnetized Dacron-hydrazide (1.05 ± 0.22 mM), POS/PVA (0.57 ± 0.09 mM), and chitosan (1.78 ± 0.24 mM) were higher than that estimated for the soluble enzyme (0.30 ± 0.03 mM). The Dacron-hydrazide enzyme derivative showed better performance than the free enzyme to hydrolyze 0.3% narigin (91% and 73% after 1 h, respectively) and synthesize rhamnosides (0.116 and 0.014 mg narirutin after 1 h, respectively).  相似文献   

11.
Garg Y  Pathak K 《AAPS PharmSciTech》2011,12(2):673-682
The purpose of research was to develop a mucoadhesive multiparticulate sustained drug delivery system of pravastatin sodium, a highly water-soluble and poorly bioavailable drug, unstable at gastric pH. Mucoadhesive microparticles were formulated using eudragit S100 and ethyl cellulose as mucoadhesive polymers. End-step modification of w/o/o double emulsion solvent diffusion method was attempted to improve the purity of the product, that can affect the dose calculations of sustained release formulations and hence bioavailability. Microparticles formed were discrete, free flowing, and exhibited good mucoadhesive properties. DSC and DRS showed stable character of drug in microparticles and absence of drug polymer interaction. The drug to polymer ratio and surfactant concentration had significant effect on mean particle size, drug release, and entrapment efficiency. Microparticles made with drug: eudragit S100 ratio of 1:3 (F6) exhibited maximum entrapment efficiency of 72.7% and ex vivo mucoadhesion time of 4.15 h. In vitro permeation studies on goat intestinal mucosa demonstrated a flux rate (1,243 μg/cm2/h) that was 169 times higher than the flux of pure drug. The gastric instability problem was overcome by formulating the optimized microparticles as enteric-coated capsules that provided a sustained delivery of the highly water-soluble drug for 12 h beyond the gastric region. The release mechanism was identified as fickian diffusion (n = 0.4137) for the optimized formulation F6. Conclusively, a drug delivery system was successfully developed that showed delayed and sustained release up to 12 h and could be potentially useful to overcome poor bioavailability problems associated with pravastatin sodium.  相似文献   

12.
Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5–7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow’s constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6–39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.  相似文献   

13.
In this study an attempt was made to prepare mucoadhesive microcapsules of gliclazide using various mucoadhesive polymers designed for oral controlled release. Gliclazide microcapsules were prepared using sodium alginate and mucoadhesive polymer such as sodium carboxymethyl cellulose (sodium CMC), carbopol 934P or hydroxy propylmethyl cellulose (HPMC) by orifice-ionic gelation method. The microcapsules were evaluated for surface morphology and particle shape by scanning electron microscope. Microcapsules were also evaluated for their microencapsulation efficiency, in vitro wash-off mucoadhesion test, in vitro drug release and in vivo study. The microcapsules were discrete, spherical and free flowing. The microencapsulation efficiency was in the range of 65–80% and microcapsules exhibited good mucoadhesive property in the in vitro wash off test. The percentage of microcapsules adhering to tissue at pH 7.4 after 6 h varied from 12–32%, whereas the percentage of microcapsules adhering to tissue at pH 1.2 after 6 h varied from 35–68%. The drug release was also found to be slow and extended for more than 16 h. In vivo testing of the mucoadhesive microcapsules in diabetic albino rats demonstrated significant antidiabetic effect of gliclazide. The hypoglycemic effect obtained by mucoadhesive microcapsules was for more than 16 h whereas gliclazide produced an antidiabetic effect for only 10 h suggesting that mucoadhesive microcapsules are a valuable system for the long term delivery of gliclazide.  相似文献   

14.
The present study was designed to investigate the effect of two plasticizers, i.e., triethyl citrate (TEC) and polyethylene glycol 6000 (PEG 6000) on the in vitro release kinetics of diclofenac sodium from sustained-release pellets. Ammonio methacrylate copolymer type B (Eudragit RS 30 D) is used as the release-retarding polymer. Both plasticizers were used at 10% and 15% (w/w) of Eudragit RS 30 D. Pellets were prepared by powder layering technology and coated with Eudragit RS 30 D by air suspension technique. Thermal properties of drug and drug-loaded beads were studied using differential scanning calorimeter (DSC). DSC thermogram represented the identity of raw materials and exhibited no interaction or complexation between the active and excipients used in the pelletization process. Dissolution study was performed by using USP apparatus 1. No significant difference was observed among the physical properties of the coated pellets of different batches. When dissolution was performed as pure drug, about 8.22% and 90% drug was dissolved at 2 h in 0.1 N HCl and at 30 min in buffer (pH 6.8), respectively. From all formulations, the release of drug in acid media was very negligible (maximum 1.8 ± 0.08% at 2 h) but in buffer only 12% and 30% drug was released at 10 h from coated pellets containing TEC and PEG 6000, respectively, indicating that Eudragit RS 30 D significantly retards the drug release rate and that drug release was varied according to the type and amount of plasticizers used. The amount of TEC in coating formulation significantly effected drug release (p < 0.001), but the effect of PEG 6000 was not significant. Formulations containing PEG 6000 released more drug (98.35 ± 2.35%) than TEC (68.01 ± 1.04%) after 24 h. Different kinetic models like zero order, first order, and Higuchi were used for fitting drug release pattern. Zero order model fitted best for diclofenac release in all formulations. Drug release mechanism was derived with Korsmeyer equation.  相似文献   

15.
The experiment was conducted to evaluate the effect of copper-loaded chitosan nanoparticles on the small intestinal morphology and activities of digestive enzyme and mucosal disaccharase in rats. Forty male Sprague–Dawley rats, with average body weight of 82 g, were randomly allotted to five groups (n = 8). All rats were received a basal diet (control) or the same basal diet added with 80 mg/kg BW CuSO4, 80 mg/kg BW chitosan (CS-I), 80 mg/kg BW copper-loaded chitosan nanoparticles (CSN-I), 160 mg/kg BW copper-loaded chitosan nanoparticles (CSN-II), respectively. The experiment lasted 21 days. The results showed that the villus heights of the small intestinal mucosa in groups CSN-I and CSN-II were higher than those of the control, group CuSO4 or CS-I. The crypt depth of duodenum and ileum mucosa in group CSN-I or CSN-II was depressed. Compared with the control, there were no significant effects of CuSO4 or CS-I on the villus height and crypt depth of small intestinal mucosa. Supplementation with CSN improved the activities of trypsin, amylase and lipase in the small intestinal contents and maltase, sucrase and lactase of duodenum, jejunum, and ileum mucosa while there were no significant effects of CuSO4 on the digestive enzyme activities of the small content compared with the control. The results indicated that intestinal morphology, activities of digestive enzyme in digesta and mucosal disaccharase were beneficially changed by treatment of copper-loaded chitosan nanoparticles.  相似文献   

16.
Research was performed on a group of 30 patients with non-insulin-dependent diabetes mellitus (NIDDM), who never received antidiabetic medication before, and on a group of 17 healthy adults. The patients were administered treatment with metformin, 1,000 mg/day. Plasmatic and urinary concentration of magnesium have been measured, copper and zinc along with the concentrations of glucose, HDL, LDL, cholesterol, tryglicerides, HbA1c, and total erythrocyte magnesium, in advance and after 3 months of treatment. Data showed significant differences in the NIDDM group vs the control group: for plasma magnesium—1.95 ± 0.19 vs 2.20 ± 0.18 mg/dl, p < 0.001; urine magnesium—237.28 ± 34.51 vs 126.25 ± 38.22 mg/24 h, p < 0.001; erythrocyte magnesium—5.09 ± 0.63 vs 6.38 ± 0.75 mg/dl, p < 0.001; plasma zinc—67.56 ± 6.21 vs 98.41 ± 20.47 μg/dl, p < 0.001; urine zinc—1,347.54 ± 158.24 vs 851.65 ± 209.75 μg/24 h, p < 0.001; plasma copper—111.91 ± 20.98 vs 96.33 ± 8.56 μg/dl, p < 0.001; and urine copper—51.70 ± 23.79 vs 36.00 ± 11.70 μg/24 h, p < 0.05. Treatment with metformin for 3 months modified significant erythrocyte magnesium—5.75 ± 0.61 vs 5.09 ± 0.63 mg/dl, p < 0.001 and urine magnesium—198.27 ± 27.07 vs 237.28 ± 34.51 mg/24 h, p < 0.001, whereas it did not modify significant the plasmatic and urinary concentration of the other cations. The erythrocyte magnesium concentration was inversely correlated with HbA1c (r = −0.438, p = 0.015). The plasma level of copper was positively correlated with HbA1c (r = 0.517, p < 0.003), tryglicerides (r = 0.534, p < 0.003), and cholesterol (r = 0.440, p < 0.05), and the plasma level of zinc was inversely correlated with glycemia (r = −0.399, p = 0.029). Our data show a significant action of metformin therapy, by increasing the total intraerythrocyte magnesium concentration and decreasing the urinary magnesium elimination, positively correlated with the decrease of glycemia and HbA1c in NIDDM patients.  相似文献   

17.
Hypericum perforatum is a well-known medicinal plant which contains a wide variety of metabolites, including xanthones, which have a wide range of biological properties, including antifungal activity. In the present study, we evaluated the capability of roots regenerated from calli of H. perforatum subsp. angustifolium to produce xanthones. Root biomass was positively correlated with the indole-3-butyric acid concentration, whereas a concentration of 1 mg l−1 was the most suitable for the development of roots. High auxin concentrations also inhibited xanthone accumulation. Xanthones were produced in large amounts, with a very stable trend throughout the culture period. When the roots were treated with chitosan, the xanthone content dramatically increased, peaking after 7 days. Chitosan also induced a release of these metabolites into the culture. The maximum accumulation (14.26 ± 0.62 mg g−1 dry weight [DW]) and release (2.64 ± 0.13 mg g−1 DW) of xanthones were recorded 7 days after treatment. The most represented xanthones were isolated, purified, and spectroscopically characterized. Antifungal activity of the total root extracts was tested against a broad panel of human fungal pathogen strains (30 Candida species, 12 Cryptococcus neoformans, and 16 dermatophytes); this activity significantly increased when using chitosan. Extracts obtained after 7 days of chitosan treatment showed high antifungal activity (mean minimum inhibitory concentration of 83.4, 39.1, and 114 μg ml−1 against Candida spp., C. neoformans, and dermatophytes, respectively). Our results suggest that root cultures can be considered as a potential tool for large-scale production of extracts with stable quantities of xanthones.  相似文献   

18.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

19.
The objectives of this study are to enhance cellular accumulation of gemcitabine with chitosan/glyceryl monooleate (GMO) nanostructures, and to provide significant increase in cell death of human pancreatic cancer cells in vitro. The delivery system was prepared by a multiple emulsion solvent evaporation method. The nanostructure topography, size, and surface charge were determined by atomic force microscopy (AFM), and a zetameter. The cellular accumulation, cellular internalization and cytotoxicity of the nanostructures were evaluated by HPLC, confocal microscopy, or MTT assay in Mia PaCa-2 and BxPC-3 cells. The average particle diameter for 2% and 4% (w/w) drug loaded delivery system were 382.3 ± 28.6 nm, and 385.2 ± 16.1 nm, respectively with a surface charge of +21.94 ± 4.37 and +21.23 ± 1.46 mV. The MTT cytotoxicity dose-response studies revealed the placebo at/or below 1 mg/ml has no effect on MIA PaCa-2 or BxPC-3 cells. The delivery system demonstrated a significant decrease in the IC50 (3 to 4 log unit shift) in cell survival for gemcitabine nanostructures at 72 and 96 h post-treatment when compared with a solution of gemcitabine alone. The nanostructure reported here can be resuspended in an aqueous medium that demonstrate increased effective treatment compared with gemcitabine treatment alone in an in vitro model of human pancreatic cancer. The drug delivery system demonstrates capability to entrap both hydrophilic and hydrophobic compounds to potentially provide an effective treatment option in human pancreatic cancer.  相似文献   

20.
To identify the importance of arbuscular mycorrhizal fungi (AMF) colonizing wetland seedlings following flooding, we assessed the effects of AMF on seedling establishment of two pioneer species, Bidens frondosa and Eclipta prostrata grown under three levels of water availability and ask: (1) Do inoculated seedlings differ in growth and development from non-inoculated plants? (2) Are the effects of inoculation and degree of colonization dependent on water availability? (3) Do plant responses to inoculation differ between two closely related species? Inoculation had no detectable effects on shoot height, or plant biomass but did affect biomass partitioning and root morphology in a species-specific manner. Shoot/root ratios were significantly lower in non-inoculated E. prostrata plants compared with inoculated plants (0.381 ± 0.066 vs. 0.683 ± 0.132). Root length and surface area were greater in non-inoculated E. prostrata (259.55 ± 33.78 cm vs. 194.64 ± 27.45 cm and 54.91 ± 7.628 cm2 vs. 46.26 ± 6.8 cm2, respectively). Inoculation had no detectable effect on B. frondosa root length, volume, or surface area. AMF associations formed at all levels of water availability. Hyphal, arbuscular, and vesicular colonization levels were greater in dry compared with intermediate and flooded treatments. Measures of mycorrhizal responsiveness were significantly depressed in E. prostrata compared with B. frondosa for total fresh weight (−0.3 ± 0.18 g vs. 0.06 ± 0.06 g), root length (−0.78 ± 0.28 cm vs.−0.11 ± 0.07 cm), root volume (−0.49 ± 0.22 cm3 vs. 0.06 ± 0.07 cm3), and surface area (−0.59 ± 0.23 cm2 vs.−0.03 ± 0.08 cm2). Given the disparity in species response to AMF inoculation, events that alter AMF prevalence in wetlands could significantly alter plant community structure by directly affecting seedling growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号