首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
位点特异性重组技术研究进展   总被引:2,自引:0,他引:2  
谷欣  黎燕 《生物技术通讯》2005,16(4):417-419
位点特异性重组技术是现代生命科学中研究基因敲除与靶向整合的工具。它的应用实现了外源基因可预测、可重复的高效表达;对于利用模型动物进行基因分析更是具有划时代的意义;在转基因植物中的运用价值同样不可忽视。  相似文献   

2.
Trapping of Mammalian Promoters by Cre-lox Site-Specific Recombination   总被引:8,自引:0,他引:8  
One of the challenges in human genome research is to identifythe promoter sequences which play a key role in the regulationof gene expression. We report here a new promoter trapping systemfor use with mammalian cells comprised of the following threesteps: 1) Cloning of DNA fragments into a promoter-trappingvector, 2) integration of the trapping vector into a designatedtarget in the mammalian genome using the Cre site-specific recombinase,and 3) screening of integrants for trapped promoter sequencesby activation of the luciferase gene. To assess the efficiencyof this system, lox trapping vectors containing sense tk promoter,antisense tk promoter, or a non-promoter sequence of the neogene were employed. The resulting levels of luciferase activityof the site-specific integrants were measured directly. Luciferaseactivity of the integrants can be assayed under conventionalculture conditions by simply replacing the culture medium withpotassium phosphate buffer containing luciferin. Only thoseG418r colonies carrying the tk promoter in the normal orientationexhibited a 21- to 35-fold increase in luciferase activity overthat of the other integrants. These results indicate that thissystem is an effective means of trapping promoter sequencesfrom random mammalian genomic DNA fragments.  相似文献   

3.
The goal of this paper is to illustrate the value and importance of the “weight of evidence” approach (use of multiple lines of evidence from field and laboratory data) to assess the occurrence or absence of ecological impairment in the aquatic environment. Single species toxicity tests, microcosms, and community metric approaches such as the Index of Biotic Integrity (IBI) are discussed. Single species toxicity tests or other single lines of evidence are valuable first tier assessments that should be used as screening tools to identify potentially toxic conditions in a effluent or the ambient environment but these tests should not be used as the final quantitative indicator of absolute ecological impairment that may result in regulatory action. Both false positive and false negative predictions of ecological effects can occur due to the inherent variability of measurement endpoints such as survival, growth and reproduction used in single species toxicity tests. A comparison of single species ambient toxicity test results with field data showed that false positives are common and likely related to experimental variability or toxicity to selected test species without measureable effects on the ecosystem. Results from microcosm studies have consistently demonstrated that chemical exposures exceeding the acute or chronic toxicity concentrations for highly sensitive species may cause little or no ecologically significant damage to an aquatic ecosystem. Sources of uncertainty identified when extrapolating from single species tests to ecological effects were: variability in individual response to pesticide exposure; variation among species in sensitivity to pesticides; effects of time varying and repeated exposures; and extrapolation from individual to population-level endpoints. Data sets from the Chesapeake Bay area (Maryland) were used to show the importance of using “multiple lines of evidence” when assessing biological impact due to conflicting results reported from ambient water column and sediment toxicity tests and biological indices (benthic and fish IBIs). Results from water column and sediment toxicity tests with multiple species in tidal areas showed that no single species was consistently the most sensitive. There was also a high degree of disagreement between benthic and fish IBI data for the various stations. The lack of agreement for these biological community indices is not surprising due to the differences in exposure among habitats occupied by these different taxonomic assemblages. Data from a fish IBI, benthic IBI and Maryland Physical Habitat Index (MPHI) were compared for approximately 1100 first through third-order Maryland non-tidal streams to show the complexity of data interpretation and the incidence of conflicting lines of evidence. A key finding from this non-tidal data set was the need for using more than one biological indicator to increase the discriminatory power of identifying impaired streams and reduce the possibility of “false negative results”. Based on historical data, temporal variability associated with an IBI in undisturbed areas was reported to be lower than the variability associated with single species toxicity tests.  相似文献   

4.
The adeno-associated virus (AAV) vector system is based on nonpathogenic and helper-virus-dependent parvoviruses. The vector system offers safe, efficient, and long-term in vivo gene transfer in numerous tissues. Clinical trials using AAV vectors have demonstrated vector safety as well as efficiency. The increasing interest in the use of AAV for clinical studies demands large quantities of vectors and hence a need for improvement in vector production. The commonly used transient-transfection method, although versatile and free of adenovirus (Ad), is not cost-effective for large-scale production. While the wild-type-Ad-dependent AAV producer cell lines seem to be cost-effective, this method faces the problem of wild-type Ad contamination. To overcome these shortcomings, we have explored the feasibility of creating inducible AAV packaging cell lines that require neither transfection nor helper virus infection. As a first step toward that goal, we have created a cell line containing highly inducible Ad E1A and E1B genes, which are essential for AAV production. Subsequently, the AAV Rep and Cap genes and an AAV vector containing a green fluorescent protein (GFP) reporter gene were stably introduced into the E1A-E1B cell line, generating inducible AAV-GFP packaging cell lines. Upon induction of E1A and E1B genes and infection with replication-defective Ad with E1A, E1B, and E3 deleted, the packaging cells yielded high-titer AAV-GFP vectors. Finally, the E2, E4, and VA genes of Ad, under the control of their endogenous promoters, were also introduced into these cells. A few producer cell lines were obtained, which could produce AAV-GFP vectors upon simple drug induction. Although future improvement is necessary to increase the stability and vector yield of the cells, our study has nonetheless demonstrated the feasibility of generating helper-virus-free inducible AAV producer cell lines.  相似文献   

5.
The construction of a delivery and clearing system for the generation of food-grade recombinant lactic acid bacterium strains, based on the use of an integrase (Int) and a resolvo-invertase (β-recombinase) and their respective target sites (attP-attB and six, respectively) is reported. The delivery system contains a heterologous replication origin and antibiotic resistance markers surrounded by two directly oriented six sites, a multiple cloning site where passenger DNA could be inserted (e.g., the cI gene of bacteriophage A2), the int gene, and the attP site of phage A2. The clearing system provides a plasmid-borne gene encoding β-recombinase. The nonreplicative vector-borne delivery system was transformed into Lactobacillus casei ATCC 393 and, by site-specific recombination, integrated as a single copy in an orientation- and Int-dependent manner into the attB site present in the genome of the host strain. The transfer of the clearing system into this strain, with the subsequent expression of the β-recombinase, led to site-specific DNA resolution of the non-food-grade DNA. These methods were validated by the construction of a stable food-grade L. casei ATCC 393-derived strain completely immune to phage A2 infection during milk fermentation.  相似文献   

6.
The fast-growing biopharmaceutical industry demands speedy development of highly efficient and reliable production systems to meet the increasing requirement for drug supplies. The generation of production cell lines has traditionally involved manual operations that are labor-intensive, low-throughput and vulnerable to human errors. We report here an integrated high-throughput and automated platform for development of manufacturing cell lines for the production of protein therapeutics.The combination of BD FACS Aria Cell Sorter, CloneSelect Imager and TECAN Freedom EVO liquid handling system has enabled a high-throughput and more efficient cell line development process. In this operation, production host cells are first transfected with an expression vector carrying the gene of interest 1, followed by the treatment with a selection agent. The stably-transfected cells are then stained with fluorescence-labeled anti-human IgG antibody, and are subsequently subject to flow cytometry analysis 2-4. Highly productive cells are selected based on fluorescence intensity and are isolated by single-cell sorting on a BD FACSAria. Colony formation from single-cell stage was detected microscopically and a series of time-laps digital images are taken by CloneSelect Imager for the documentation of cell line history. After single clones have formed, these clones were screened for productivity by ELISA performed on a TECAN Freedom EVO liquid handling system. Approximately 2,000 - 10,000 clones can be screened per operation cycle with the current system setup.This integrated approach has been used to generate high producing Chinese hamster ovary (CHO) cell lines for the production of therapeutic monoclonal antibody (mAb) as well as their fusion proteins. With the aid of different types of detecting probes, the method can be used for developing other protein therapeutics or be applied to other production host systems. Comparing to the traditional manual procedure, this automated platform demonstrated advantages of significantly increased capacity, ensured clonality, traceability in cell line history with electronic documentation and much reduced opportunity in operator error.Download video file.(45M, mov)  相似文献   

7.
目的:检测卵巢癌细胞系中Notchl信号蛋白的表达,为在卵巢癌细胞中对Notchl进行RNA干涉研究的体外实验筛选靶细胞。方法:采用逆转录聚合酶链反应(RT-PCR)法及Westernblotting对卵巢癌细胞系SKOV3、HO-8910、HO-8910-PM和3AO中Notchl进行检测。结果:Notchl信号蛋白在4种卵巢癌细胞系中均有表达,其在HO-8910-PM中表现为高表达,在SKOV3和3AO中表现为中等表达,在HO-8910中表现为低表达。结论:HO-8910-PM适合作为靶细胞,进行Notchl信号蛋白的RNA干涉研究。  相似文献   

8.
Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.  相似文献   

9.
糖结合蛋白(glycan-binding protein,GBP)在细胞生命周期中扮演着重要角色,如细胞识别、运输、免疫、代谢、增殖分化及细胞间的相互作用等.目前,对GBP的改变对细胞生物过程产生影响的研究甚少.本研究用糖芯片技术对肝癌细胞系Hep G2和正常肝细胞系L02表达的GBP进行研究;糖细胞化学验证确定差异表达GBP在肝癌细胞系中的变化和分布.结果显示,8种糖探针(如SL、LNT和Gal NAc等)和5种糖探针(如Man、Man-9-Glycan,Xyl等)分别对应的GBP在Hep G2细胞中表达上调或下调.糖细胞化学结果显示:Gal NAc识别的GBPs主要表达在Hep G2的胞膜、中央胞质、核周胞质区域,而在L02的相同区域表达减弱;Neu Ac识别的GBPs主要表达在L02的胞膜区及核周胞质区,而在Hep G2细胞的相同区域表达减弱.这些数据为寻找新的肝癌发病机制和抗肿瘤策略提供了有用信息.  相似文献   

10.
Site-specific recombination by phages lambda and P22 is carried out by multiprotein-DNA complexes. Integration host factor (IHF) facilitates lambda site-specific recombination by inducing DNA bends necessary to form an active recombinogenic complex. Mutants lacking IHF are over 1,000-fold less proficient in supporting lambda site-specific recombination than wild-type cells. Although the attP region of P22 contains strong IHF binding sites, in vivo measurements of integration and excision frequencies showed that infecting P22 phages can perform site-specific recombination to its maximum efficiency in the absence of IHF. In addition, a plasmid integration assay showed that integrative recombination occurs equally well in wild-type and ihfA mutant cells. P22 integrative recombination is also efficient in Escherichia coli in the absence of functional IHF. These results suggest that nucleoprotein structures proficient for recombination can form in the absence of IHF or that another factor(s) can substitute for IHF in the formation of complexes.  相似文献   

11.
The hup gene fragment of cosmid pHU52 was integrated into the genome of chickpea-Rhizobium Rcd301 via site-specific homologous recombination. Two small fragments of genomic DNA of strain Rcd301 itself were provided to flank cloned hup genes to facilitate the integration. The hup insert DNA of cosmid pHU52 was Isolated as an Intact 30.2 kb fragment using EcoRI, and cloned on partially restricted cosmid clone pSPSm3, which carries a DNA fragment of strain Rcd301 imparting streptomycin resistance. One of the recombinant cosmid clones, pBSL 12 thus obtained was conjugally transferred to the strain Rcd301. The integration of hup gene fragment into the genomic DNA through site-specific homologous recombination, was ensured by introducing an incompatible plasmid, pPH1 JI. The integration was confirmed by Southern hybridization. The integrated hup genes were found to express ex plants in two such constructs BSL 12–1 and BSL 12–3.  相似文献   

12.
Like most temperate bacteriophages, phage Mx8 integrates into a preferred locus on the genome of its host, Myxococcus xanthus, by a mechanism of site-specific recombination. The Mx8 int-attP genes required for integration map within a 2.2-kilobase-pair (kb) fragment of the phage genome. When this fragment is subcloned into a plasmid vector, it facilitates the site-specific integration of the plasmid into the 3' ends of either of two tandem tRNAAsp genes, trnD1 and trnD2, located within the attB locus of the M. xanthus genome. Although Int-mediated site-specific recombination occurs between attP and either attB1 (within trnD1) or attB2 (within trnD2), the attP x attB1 reaction is highly favored and often is accompanied by a deletion between attB1 and attB2. The int gene is the only Mx8 gene required in trans for attP x attB recombination. The int promoter lies within the 106-bp region immediately upstream of one of two alternate GTG start codons, GTG-5208 (GTG at bp 5208) and GTG-5085, for integrase and likely is repressed in the prophage state. All but the C-terminal 30 amino acid residues of the Int protein are required for its ability to mediate attP x attB recombination efficiently. The attP core lies within the int coding sequence, and the product of integration is a prophage in which the 3' end of int is replaced by host sequences. The prophage intX gene is predicted to encode an integrase with a different C terminus.  相似文献   

13.
本研究构建了稳定表达甲型流感病毒基质蛋白2(M2)的哺乳动物细胞系。应用PCR方法扩增A/PR/8/34(H1N1)株流感病毒M2基因,将其克隆至真核表达载体pcDNA5/FRT(pDF)上,构建出pDF-M2重组质粒。将鉴定正确的pDF-M2与表达Flp重组酶的pOG44质粒共转染Flp-In-CHO细胞,通过体内同源重组使目的基因整合到宿主细胞染色体上。筛选具有Hygromycin B抗性的重组细胞株命名为CHO-M2。以间接免疫荧光法(IFA)和Western blot法检测M2的表达,共获得15株高表达M2蛋白的重组细胞株。这些重组细胞株在连续培养10代后,PCR方法仍可检测到M2基因的存在,IFA也检测到蛋白的稳定表达。本研究成功获得了稳定表达甲型流感病毒M2的哺乳动物细胞系,为M2蛋白的功能研究和非复制型流感病毒疫苗的研制提供了新的工具。  相似文献   

14.
目的:检测卵巢癌细胞系中Notch1信号蛋白的表达,为在卵巢癌细胞中对Notchl进行RNA干涉研究的体外实验筛选靶细胞.方法:采用逆转录聚合酶链反应(RT-PCR)法及Western blotting对卵巢癌细胞系SKOV3、HO-8910、HO-8910-PM和3AO中Notch1进行检测.结果:Notch1信号蛋白在4种卵巢癌细胞系中均有表达,其在HO-8910-PM中表现为高表达,在SKOV3和3AO中表现为中等表达,在HO-8910中表现为低表达.结论:HO-8910-PM适合作为靶细胞,进行Notch1信号蛋白的RNA干涉研究.  相似文献   

15.
Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.Homologous recombination (HR) is defined as the homology-directed exchange of genetic information between two DNA molecules (Fig. 1). Mitotic recombination is often initiated by single-stranded DNA (ssDNA), which can arise by several avenues (Mehta and Haber 2014). They include the processing of DNA double-strand breaks by 5′ to 3′ resection, during replication of damaged DNA, or during excision repair (Symington 2014). The ssDNA is bound by replication protein A (RPA) to control its accessibility to the Rad51 recombinase (Sung 1994, 1997a; Sugiyama et al. 1997; Morrical 2014). The barrier to Rad51-catalyzed recombination imposed by RPA can be overcome by a number of mediators, such as BRCA2 and Rad52, which serve to replace RPA with Rad51 on ssDNA, and the Rad51 paralogs Rad55-Rad57 (RAD51B-RAD51C-XRCC2-XRCC3) and the Psy3-Csm2-Shu1-Shu2 complex (SHU) (RAD51D-XRCC2-SWS1), which stabilize Rad51 filaments on ssDNA (see Sung 1997b; Sigurdsson et al. 2001; Martin et al. 2006; Bernstein et al. 2011; Liu et al. 2011; Qing et al. 2011; Amunugama et al. 2013; Zelensky et al. 2014). The Rad51 nucleoprotein filament catalyzes the invasion into a homologous duplex to produce a displacement loop (D-loop) (Fig. 1). At this stage, additional antirecombination functions are exerted by Srs2 (FBH1, PARI), which dissociates Rad51 filaments from ssDNA, and Mph1 (FANCM), which disassembles D-loops (see Daley et al. 2014). Upon Rad51-catalyzed strand invasion, the ATP-dependent DNA translocase Rad54 enables the invading 3′ end to be extended by DNA polymerases to copy genetic information from the intact duplex (Li and Heyer 2009). Ligation of the products often leads to joint molecules (JMs), such as single- or double-Holliday junctions (s/dHJs) or hemicatenanes (HCs), which must be processed to allow separation of the sister chromatids during mitosis. JMs can be dissolved by the Sgs1-Top3-Rmi1 complex (STR) (BTR, BLM-TOP3α-RMI1-RMI2) (see Bizard and Hickson 2014) or resolved by structure-selective nucleases, such as Mus81-Mms4 (MUS81-EME1), Slx1-Slx4, and Yen1 (GEN1) (see Wyatt and West 2014). Mitotic cells favor recombination events that lead to noncrossover events likely to avoid potentially detrimental consequences of loss of heterozygosity and translocations.Open in a separate windowFigure 1.Primary pathways for homology-dependent double-strand break (DSB) repair. Recombinational repair of a DSB is initiated by 5′ to 3′ resection of the DNA end(s). The resulting 3′ single-stranded end(s) invade an intact homologous duplex (in red) to prime DNA synthesis. For DSBs that are repaired by the classical double-strand break repair (DSBR) model, the displaced strand from the donor duplex pairs with the 3′ single-stranded DNA (ssDNA) tail at the other side of the break, which primes a second round of DNA synthesis. After ligation of the newly synthesized DNA to the resected 5′ strands, a double-Holliday junction (dHJ) intermediate is generated. The dHJ can be either dissolved by branch migration (indicated by arrows) into a hemicatenane (HC) leading to noncrossover (NCO) products or resolved by endonucleolytic cleavage (indicated by triangles) to produce NCO (positions 1, 2, 3, and 4) or CO (positions 1, 2, 5, and 6) products. Alternatively to the double-strand break repair (DSBR) pathway, the invading strand is often displaced after limited synthesis and the nascent complementary strand anneals with the 3′ single-stranded tail of the other end of the DSB. After fill-in synthesis and ligation, this pathway generates NCO products and is referred to as synthesis-dependent strand annealing (SDSA).

Table 1.

Evolutionary conservation of homologous recombination proteins between Saccharomyces cerevisiae and Homo sapiens
Functional classS. cerevisiaeH. sapiens
End resectionMre11-Rad50-Xrs2MRE11-RAD50-NBS1
Sae2CtIP
Exo1EXO1
Dna2-Sgs1-Top3-Rmi1DNA2-BLM-TOP3α-RMI1-RMI2
AdaptorsRad953BP1, MDC1
BRCA1
Checkpoint signalingTel1ATM
Mec1-Ddc2ATR-ATRIP
Rad53CHK2
Rad24-RFCRAD17-RFC
Ddc1-Mec3-Rad17RAD9-HUS1-RAD1
Dpb11TOPBP1
Single-stranded DNA bindingRfa1-Rfa2-Rfa3RPA1-RPA2-RPA3
Single-strand annealingRad52RAD52
Rad59
MediatorsBRCA2-PALB2
Rad52
Strand exchangeRad51RAD51
Rad54RAD54A, RAD54B
Rdh54
Rad51 paralogsRad55-Rad57RAD51B-RAD51C-RAD51D-XRCC2-XRCC3
Psy3-Csm2-Shu1-Shu2RAD51D-XRCC2-SWS1
AntirecombinasesSrs2FBH1, PARI
Mph1FANCM
RTEL
Resolvases and nucleasesMus81-Mms4MUS81-EME1
Slx1-Slx4SLX1-SLX4
Yen1GEN1
Rad1-Rad10XPF-ERCC1
DissolutionSgs1-Top3-Rmi1BLM-TOP3α-RMI1-RMI2
Open in a separate windowThe vast majority of cell biological studies of mitotic recombination in living cells are performed by tagging of proteins with genetically encoded green fluorescent protein (GFP) or similar molecules (Shaner et al. 2005; Silva et al. 2012). In this context, it is important to keep in mind that an estimated 13% of yeast proteins are functionally compromised by GFP tagging (Huh et al. 2003). By choosing fluorophores with specific photochemical properties, it has been possible to infer biochemical properties, such as diffusion rates, protein–protein interactions, protein turnover, and stoichiometry of protein complexes at the single-cell level. To visualize the location of specific loci within the nucleus, sequence-specific DNA-binding proteins such the Lac and Tet repressors have been used with great success. Specifically, tandem arrays of 100–300 copies of repressor binding sites are inserted within 10–20 kb of the locus of interest in cells expressing the GFP-tagged repressor (Straight et al. 1996; Michaelis et al. 1997). In wild-type budding yeast, such protein-bound arrays are overcome by the replication fork without a cell-cycle delay or checkpoint activation (Dubarry et al. 2011). However, the arrays are unstable in rrm3Δ and other mutants (Dubarry et al. 2011). More pronounced DNA replication blockage by artificial protein-bound DNA tandem arrays has be observed in fission yeast, which is accompanied by increased recombination and formation of DNA anaphase bridges (Sofueva et al. 2011). Likewise, an array of Lac repressor binding sites was reported to induce chromosomal fragility in mouse cells (Jacome and Fernandez-Capetillo 2011). However, these repressor-bound arrays generally appear as a focus with a size smaller than the diffraction limit of light, which is in the range 150–300 nm for wide-field light microscopy.  相似文献   

16.
17.
为了实现微生物异源合成天然类胡萝卜素玉米黄质,以一株产β-胡萝卜素的酿酒酵母为底盘细胞,利用合成生物学技术构建人工酵母细胞。通过在染色体整合玉米黄质生物合成关键酶-β-胡萝卜素羟化酶(CrtZ),并对其9种来源进行筛选,发现整合欧文氏菌来源的β-胡萝卜素羟化酶的菌株获得玉米黄质的最高产量。法尼基焦磷酸(FPP)作为合成萜烯类天然产物的重要前体,通过敲除 Lpp1和Dpp1 基因,削减法尼基焦磷酸向法呢醇的转化,为玉米黄质的合成提供更多的前体,使玉米黄质的产量提高了1.27倍(从29 mg/L提高到36.8 mg/L)。在此基础上,通过增加欧文氏菌来源CrtZ的基因拷贝数及调节其启动子的强弱来增强β-胡萝卜素羟化酶的表达强度,使得玉米黄质的摇瓶产量达到96.2 mg/L,是目前公开报道中产量最高的。  相似文献   

18.
The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN) vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP)-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR). Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.  相似文献   

19.
Abstract

Mammalian cell culture has been an important technique in laboratory-scale experimentation for many decades. Developments in large-scale culture have been due to the need to grow large numbers of cells to support the growth of viruses for vaccine production, and more recently, for growing hybridoma cells as a source of monoclonal antibody. Increasingly, however, pharmaceutical products such as hormones, enzymes, growth factors, and clotting factors are being produced from cell lines which have been manipulated by recombinant DNA techniques. It is clear, therefore, that the high cost of growing mammalian cells on a large scale does not necessarily prohibit their use for biotechnology, and indeed there is considerable evidence to suggest that animal cell biotechnology will continue to be a major growth area in the future.  相似文献   

20.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号