首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

2.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

3.
The effects of Diazinon 60 EC (organophosphate insecticide, active substance diazinon) on mortality, growth rate, early ontogenetic rate, and occurrence of malformations was studied in embryos and larvae of tench, Tinca tinca (L.). The exposure of fish to 0, 10, 100, 1,000, and 3,000 μg dm−3 of Diazinon 60 EC was initiated 24 h after fertilization of eggs and concluded 32 days later. At the highest concentration tested (3,000 μg dm−3), total mortality was observed within the first 15 days of exposure. A concentration of 1,000 μg dm−3 caused high incidence of malformations, decrease in growth rate and ontogenetic development slowed down. A concentration of 100 μg dm−3 mildly decreased growth rate, but at 10 μg dm−3 no changes compared to the control were observed. Thus, Diazion 60 EC at the concentration of 10 μg dm−3 is not dangerous for the embryos and larvae of tench.  相似文献   

4.
Mucor indicus can be used to produce ethanol from a variety of sugars, including pentose’s. An extract of it, produced by autolysis, could replace yeast extract in culture medium with improved production of ethanol. At 10 g l−1, the extract gave a higher ethanol yield (0.47 g g−1) and productivity (0.71 g l−1 h−1) compared to medium containing yeast extract (yield 0.45 g g−1; productivity 0.67 g l−1 h−1).  相似文献   

5.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

6.
The binary vector pCAMBIA3300-gpdA-hph-trpC with hygromycin B phosphotransferase (hph) was constructed and transformed into Monascus albidus 9901 by Agrobacterium tumefaciens-mediated transformation, with gene hph as the selective marker. In order to improve the efficiency of A. tumefaciens-mediated transformation in M. albidus 9901, we optimized various factors including concentration of M. albidus 9901 spores, cell density of A. tumefaciens, co-cultivation time, temperature, and acetosyringone concentration. Most transformants of M. albidus 9901 could grow stably on media containing 50 μg ml−1 hygromycin B up to five generations. The presence of hph was identified by PCR. Two transformants H1 and H2 which produced more Monacolin K than M. albidus 9901 were screened, and the concentration of Monacolin K in the fermented millet by H1 and H2 increased by 42.15% and 40.34% respectively compared with that produced by M. albidus 9901.  相似文献   

7.
Thirty single-spore isolates of a toxigenic fungus, Fusarium oxysporum, were isolated from asparagus spears and identified by species-specific polymerase chain reaction (PCR) and translation elongation factor 1-α (TEF) sequence analysis. In the examined sets of F. oxysporum isolates, the DNA sequences of mating type genes (MAT) were identified. The distribution of MAT idiomorph may suggest that MAT1-2 is a predominant mating type in the F. oxysporum population. F. oxysporum is mainly recognised as a producer of moniliformin—the highly toxic secondary metabolite. Moniliformin content was determined by high-performance liquid chromatography (HPLC) analysis in the range 0.05–1,007.47 μg g−1 (mean 115.93 μg g−1) but, also, fumonisin B1 was detected, in the concentration range 0.01–0.91 μg g−1 (mean 0.19 μg g−1). There was no association between mating types and the mycotoxins biosynthesis level. Additionally, a significant intra-species genetic diversity was revealed and molecular markers associated with toxins biosynthesis were identified.  相似文献   

8.
Guggulsterone, a hypolipidemic natural agent, is produced in resin canals of the plant Commiphora wightii. In this study, the stimulatory effects of growth retardants [ALAR (N,N-dimethylaminosuccinamic acid) and CCC (chlormequat chloride)] and fungal elicitor on guggulsterone accumulation in cell cultures of C. wightii are reported. CCC at 1 mg l−1 enhanced guggulsterone content (~123 μg l−1) when added on the fifth day after inoculation, while ALAR at 2.5 mg l−1 increased guggulsterone content (~116 μg l−1) when added on the tenth day. In a two-stage fed-batch process, combined treatment with fungal elicitor and growth retardant caused a significant increase (~353 μg l−1) in guggulsterone content in cell cultures after 17 days of growth. This represents an approximately fivefold increase over the guggulsterone contents in initial cultures of this plant.  相似文献   

9.
Mediterranean vegetation emits large amounts of terpenes. We aimed to study the effects of the decreases in soil water availability forecast for the next decades by global circulation models and ecophysiological models on the terpene emissions by two widely distributed Mediterranean woody species, Phillyrea latifolia L. and Quercus ilex L. We subjected holm oak forest plots to an experimental soil drought of ca. 20% decrease in soil moisture by partial rainfall exclusion and runoff exclusion. We measured the emission rates throughout the seasons for two years with contrasting precipitation and soil moisture (16.6% average in 2003 vs. 6.4% as average in 2005). Among the detected volatile terpenes, only α-pinene and limonene were present in detectable quantities in all of the studied periods. Total terpene emitted ranged from practically zero (spring 2003) to 3.6 and 58.3 μg/(g dry wt h) (winter 2005 and summer 2003 for P. latifolia and Q. ilex, respectively). A clear seasonality was found in the emission rates (they were the highest in summer in both species) and also in the qualitative composition of the emission mix. Maximum emissions of α-pinene occurred in spring and maximum emissions of limonene in winter. Neither the inter-annual differences in water availability nor the rain exclusion treatment significantly affected the emissions in P. latifolia, but Q. ilex showed by 17% lower emissions during the drier second year of study, 2005, but more than two- and threefold increases with the drought treatment in summer 2003 and in summer 2005, respectively, showing historical accumulated effects. These results, which show increased monoterpene emission under the moderate drought produced by the treatment and decreased emission under the severe second year drought, and a much higher sensitivity to drought in Q. ilex than in P. latifolia, are useful in understanding the behavior of plant volatiles under Mediterranean conditions and in modeling future emission under changing climate conditions. They show that the usage of current models could lead to under- and overestimations of the emission under summer dry conditions, because most current algorithms are based on light and temperature only.  相似文献   

10.
Effects of sequential procedures required for cryopreservation of embryos excised from the recalcitrant seeds of Haemanthus montanus were assessed ultrastructurally and in conjunction with respiratory activity and the rate of protein synthesis. Fresh material (water content, 5.05 ± 0.92 g g−1 dry mass) afforded ultrastructural evidence of considerable metabolic activity, borne out by respiratory rates. Neither exposure to glycerol nor sucrose as penetrating and non-penetrating cryoprotectants, respectively, brought about degradative changes, although increased vacuolation and autophagy accompanied both, while respiratory and protein synthetic activity were not adversely affected. Glycerol-cryoprotected embryos flash dried to water contents >0.4 g g−1 showed organised ultrastructural features and considerable autophagy consistent with metabolic activity, and although respiratory activity was lower, protein synthesis rate was enhanced relative to fresh material. However, at water contents <0.4 g g−1, embryo tissue presented a mosaic of cells of variable density and ultrastructural status, but trends in rates of respiration and protein synthesis remained similar. Flash drying after sucrose exposure was accompanied by considerable ultrastructural abnormality particularly at water contents <0.4 g g−1, lysis of individual and groups of cells and considerable depression of respiration, but not of protein synthesis. Success, assessed as ≥50% axes forming seedlings after cryogen exposure, was obtained only when glycerol-cryoprotected embryos at water contents >0.4 g g−1—in which the degree of vacuolation remained moderate—were rapidly cooled. The outcomes of this study are considered particularly in terms of the stresses imposed by prolonged, relatively slow dehydration and ultimate water contents, on embryos showing considerable metabolic activity.  相似文献   

11.
We followed the diurnal cycles of isoprenoid emissions from Quercus ilex seedlings under drought and after re-watering. We found that Quercus ilex, generally considered a non-isoprene emitter, also emitted isoprene although at low rates. The emission rates of isoprene reached 0.37 ± 0.02 nmol m−2 s−1 in controls, 0.15 ± 0.03 nmol m−2 s−1 under drought and 0.35 ± 0.04 nmol m−2 s−1 after re-watering, while emission rates of monoterpenes reached 11.0 ± 3.0, 7.0 ± 1.0 and 23.0 ± 5.0 nmol m−2 s−1, respectively. Emission rates recovered faster after re-watering than photosynthetic rate and followed diurnal changes in irradiance in controls and under drought, but in leaf temperature after re-watering.  相似文献   

12.
Combined effect of light intensity and glucose concentration on Arthrospira platensis growth and photosynthetic response was evaluated using a 32 factorial design. This design was carried out with light levels of 50, 100, and 150 μmol photons m−2 s−1 and glucose concentrations of 0.5, 1.5, and 2.5 g L−1. Results from the response surface methodology were that the highest level of light intensity and glucose concentration improved biomass (1.33 g L−1), maximum specific growth rate (0.49 day−1), and net photosynthetic rate (139.89 μmol O2 mg Chl−1 h−1). Furthermore, the interaction of both factors showed that at low light, glucose had a low effect on maximum biomass and maximal net photosynthetic rate. However, at the highest light levels, the effect of glucose was more sensitive and the increase of glucose concentration increased the levels of all responses. The rates of the instantaneous relative growth, net photosynthesis, and dark respiration of growth cultures showed two different phases in mixotrophic condition. The first was distinguished by the preponderance of the photoautotrophic mode; the second was based mainly on photoheterotrophy.  相似文献   

13.
The composition and ecological role of ciliates and dinoflagellates were investigated at one station in Kongsfjorden, Svalbard, during six consecutive field campaigns between March and December 2006. Total ciliate and dinoflagellate abundance mirrored the seasonal progression of phytoplankton, peaking with 5.8 × 104 cells l−1 in April at an average chlorophyll a concentration of 10 μg l−1. Dinoflagellates were more abundant than ciliates, dominated by small athecates. Among ciliates, aloricate oligotrichs dominated the assemblage. A large fraction (>60%) of ciliates and dinoflagellates contained chloroplasts in spring and summer. The biomass of the purely heterotrophic fraction of the ciliate and dinoflagellate community (protozooplankton) was with 14 μg C l−1 highest in conjunction with the phytoplankton spring bloom in April. Growth experiments revealed similar specific growth rates for heterotrophic ciliates and dinoflagellates (<0–0.8 d−1). Food availability may have controlled the protozooplankton assemblage in winter, while copepods may have exerted a strong control during the post-bloom period. Calculations of the potential grazing rates of the protozooplankton indicated its ability to control or heavily impact the phytoplankton stocks at most times. The results show that ciliates and dinoflagellates were an important component of the pelagic food web in Kongsfjorden and need to be taken into account when discussing the fate of phytoplankton and biogeochemical cycling in Arctic marine ecosystems.  相似文献   

14.
We have established two transgenic cell suspension culture lines of Nicotiana tabacum that express the catalytic antibody 14D9 as a secretory product (sec-Ab) or as a KDEL-tagged product in the endoplasmic reticulum (Ab-KDEL), respectively. After 3 years of culture, the performance improved to a production level of 0.15 ± 0.03 μg ml−1 on the seventh day of culture for the sec-Ab line and 0.48 ± 0.05 μg ml−1 on the third day for Ab-KDEL line. Analysis of the effect of osmotic stress using mannitol (90 g l−1) as an osmolite revealed that there was a 12-fold increase in antibody yield (1.96 ± 0.20 μg ml−1) on the seventh day of culture in line sec-Ab and a fivefold increase (2.31 ± 0.18 μg ml−1) on the seventh day for line Ab-KDEL. The concentration of the antibody in the culture medium was not significant. Dimethyl sulfoxide used as a permeabilizing agent was not effective in increasing 14D9 yield, but it did cause distinctive cell damage at all concentrations tested.  相似文献   

15.
The polychaete Nereis falsa Quatrefages, 1866 is present in the area of El Kala National Park on the East coast of Algeria. Field investigations were carried out from January to December 2007 to characterize the populations’ reproductive cycle, secondary production and dynamics. Reproduction followed the atokous type, and spawning occured from mid-June to the end of August/early September when sea temperature was highest (20–23°C). The diameter of mature oocytes was approximately 180 μm. Mean lifespan was estimated to about one year. In 2007, the mean density was 11.27 ind. m−2 with a minimum of 7.83 ind. m−2 in April and a maximum of 14.5 ind. m−2 in February. The mean annual biomass was 1.36 g m−2 (fresh weight) with a minimum of 0.86 g m−2 in December and a maximum of 2.00 g m−2 in June. The population consisted of two cohorts distinguishable from size frequency distributions. One cohort corresponded to the recruitment of 2006 and the other appeared during the study period in September 2007. The annual production of N. falsa was 1.45 g m−2 year−1, and the production/biomass ratio was 1.07 year−1.  相似文献   

16.
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l−1) was achieved using soybean oil at 40 g l−1 and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l−1 h−1, and the calculated Yp/s value was 0.85 g g−1. Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.  相似文献   

17.
We tested the effect of forecasted soil drought and warming climate conditions for the next decades on emission rates of isoprenoids by mediterranean shrublands. We measured isoprenoid emissions by whole dominant mediterranean woody plants (Erica multiflora L. and Globularia alypum L.) inhabiting the studied shrublands. Monoterpene emissions were detected in both species, but isoprene was emitted only by E. multiflora. Maximum emission rates were found during the hottest periods (except for G. alypum, in which they occurred in autumn), and minimum emission rates in winter in E. multiflora. Terpene emission rates ranged from 0.08 μg/(g dry wt h) in winter in E. multiflora to 8.8 μg/(g dry wt h) in G. alypum in autumn. In E. multiflora, the terpene emission rates decreased in response to soil drought only in summer, but increased in response to warming in spring and autumn. Isoprene emissions ranged from 0.1 μg/(g dry wt h) in spring to 4.4 μg/(g dry wt h) in summer. The effect of the treatments was only detected in autumn when soil drought and warming had a negative effect on isoprene emission rates. These data might improve our knowledge of isoprenoid emissions at the canopy level and in response to climate change, soil drought, or warming. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 1, pp. 35–45. The text was submitted by the authors in English.  相似文献   

18.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

19.
Photosynthetic properties of carnivorous plants have not been well characterized and the extent to which photosynthesis contributes to carbon gain in most carnivorous plants is also largely unknown. We investigated the photosynthetic light response in three carnivorous plant species, Drosera rotundifolia L. (sundew; circumpolar and native to northern British Columbia, Canada), Sarracenia leucophylla Rafin. (‘pitcher-plant’; S.E. United States), and D. capensis L. (sundew; Cape Peninsula, South Africa), using portable gas-exchange systems to explore the capacity for photosynthetic carbon gain in carnivorous plant species. Maximal photosynthetic rates (1.32–2.22 μmol m−2 s−1 on a leaf area basis) and saturating light intensities (100 to 200 μmol PAR m−2 s−1) were both low in all species and comparable to shade plants. Field or greenhouse-grown D. rotundifolia had the highest rates of photosynthesis among the three species examined. Dark respiration, ranging from −1.44 (S. leucophylla) to −3.32 (D. rotundifolia) μmol m−2 s−1 was high in comparison to photosynthesis in the species examined. Across greenhouse-grown plants, photosynthetic light compensation points scaled with light-saturated photosynthetic rates. An analysis of gas-exchange and growth data for greenhouse-grown D. capensis plants suggests that photosynthesis can account for all plant carbon gain in this species.  相似文献   

20.
Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NPmax), maximum efficiency of photosystem II [variable fluorescence (F v)/maximum fluorescence yield (F m)] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NPmax did not differ between control (0.2 g N m−2 year−1) and high N (3.0 g N m−2 year−1), but was higher in the mid N treatment (1.5 g N m−2 year−1). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F v/F m did not differ between N treatments. Increased temperature (+3.6°C) had a small negative effect on N concentration, but had no significant effect on NPmax or F v/F m. Addition of 2 g S m−2 year−1 showed a weak negative effect on NPmax and F v/F m. Our results suggest a unimodal response of NPmax to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g−1. In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号