首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.  相似文献   

3.
4.
5.
6.
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth.Polycomb Gr...  相似文献   

7.
8.
9.
Polycomb group (PcG) complexes maintain epigenetically repressed states that need to be reprogrammed when cells become committed to differentiation. In contrast to the previously held belief that PcG complexes regulate only a few selected genes, recent efforts have revealed hundreds of potential PcG targets in mammals, insects and plants. These results have changed our perception about PcG recruitment and function on chromatin. Both in animals and plants, evolutionarily conserved PcG complexes mark the chromatin of their target genes by methylation at histone H3 lysine 27. Surprisingly, however, both the proteins recognizing this mark and the mechanisms causing gene repression differ between both kingdoms. This suggests that different developmental strategies used in plant and animal development entailed the evolution of different repressive maintenance mechanisms.  相似文献   

10.
Diversification in sexual and asexual organisms   总被引:4,自引:0,他引:4  
Abstract Sexual reproduction has long been proposed as a major factor explaining the existence of species and species diversity. Yet, the importance of sex for diversification remains obscure because of a lack of critical theory, difficulties of applying universal concepts of species and speciation, and above all the scarcity of empirical tests. Here, we use genealogical theory to compare the relative tendency of strictly sexual and asexual organisms to diversify into discrete genotypic and morphological clusters. We conclude that asexuals are expected to display discrete clusters similar to those found in sexual organisms. Whether sexuals or asexuals display stronger clustering depends on a number of factors, but in at least some scenarios asexuals should display a stronger pattern. Confounding factors aside, the only explanation we identify for stronger patterns of diversification in sexuals than asexuals is if the faster rates of adaptive change conferred by sexual reproduction promote greater clustering. Quantitative comparisons of diversification in related sexual and asexual taxa are needed to resolve this issue. The answer should shed light not only on the importance of the different stages leading to diversification, but also on the adaptive consequences of sex, still largely unexplored from a macroevolutionary perspective.  相似文献   

11.
Poor male function favours the coexistence of sexual and asexual relatives   总被引:1,自引:0,他引:1  
Britton  & Mogie 《Ecology letters》2001,4(2):116-121
Classical models of the evolution of sex typically assume that an asexual lineage, once derived, is reproductively separate from the sexual lineage from which it was derived. However, many asexuals, including hermaphrodite plants, produce male gametes capable of fertilising the eggs of co-existing sexuals, giving rise to sexual and asexual progeny. This male function of asexuals may be poor, and it has been proposed that this could favour sexuality and adversely affect the successful establishment of asexual lineages. We show that things are more complicated than this; the effect is frequency-dependent and poor male function may sometimes favour asexuality. In a spatially distributed population of flowering plants, it can prevent the successful invasion of either reproductive mode by the other via long-range dispersal. Consequently invasions must be driven by short-range dispersal, and are therefore extremely slow. Thus poor male function favours long-term co-existence of sexuals and asexuals. When coupled with the superior ability of asexuals to colonise virgin territory after an Ice Age, it may explain current ecological distribution patterns.  相似文献   

12.
Comment on: Martinez AM, et al. Nat Genet 2009; 41:1076-82.  相似文献   

13.
Seed development in angiosperms initiates after double fertilization, leading to the formation of a diploid embryo and a triploid endosperm. The active repression of precocious initiation of certain aspects of seed development in the absence of fertilization requires the Polycomb group proteins MEDEA (MEA), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and FERTILIZATION-INDEPENDENT SEED2. Here we show that the Arabidopsis WD-40 domain protein MSI1 is present together with MEA and FIE in a 600 kDa complex and interacts directly with FIE. Mutant plants heterozygous for msi1 show a seed abortion ratio of 50% with seeds aborting when the mutant allele is maternally inherited, irrespective of a paternal wild-type or mutant MSI1 allele. Further more, msi1 mutant gametophytes initiate endosperm development in the absence of fertilization at a high penetrance. After pollination, only the egg cell becomes fertilized, the central cell starts dividing prior to fertilization, resulting in the formation of seeds containing embryos surrounded by diploid endosperm. Our results establish that MSI1 has an essential function in the correct initiation and progression of seed development.  相似文献   

14.
15.
Polycomb group (PcG) proteins play essential roles in animal and plant life cycles by controlling the expression of important developmental regulators. These structurally heterogeneous proteins form multimeric protein complexes that control higher order chromatin structure and, thereby, the expression state of their target genes. Once established, PcG proteins maintain silent gene expression states over many cell divisions providing a molecular basis for a cellular 'memory.' PcG proteins are best known for their role in the control of homeotic genes in Drosophila and mammals. In addition, they play important roles in the control of cell proliferation in vertebrate and invertebrate systems. Recent studies in plants have shown that PcG proteins regulate diverse developmental processes and, as in animals, they affect both homeotic gene expression and cell proliferation. Thus, the function of PcG proteins has been widely conserved between the plant and animal kingdoms.  相似文献   

16.
Polycomb group and trithorax group proteins in Arabidopsis   总被引:1,自引:0,他引:1  
Polycomb group (PcG) and trithorax group (trxG) proteins form molecular modules of a cellular memory mechanism that maintains gene expression states established by other regulators. In general, PcG proteins are responsible for maintaining a repressed expression state, whereas trxG proteins act in opposition to maintain an active expression state. This mechanism, first discovered in Drosophila and subsequently in mammals, has more recently been studied in plants. The characterization of several Polycomb Repressive Complex 2 (PRC2) components in Arabidopsis thaliana constituted a first breakthrough, revealing key roles of PcG proteins in the control of crucial plant developmental processes. Interestingly, the recent identification of plant homologues of the Drosophila trithorax protein suggests a conservation of both the PcG and trxG gene regulatory system in plants. Here, we review the current evidence for the role of PcG and trxG proteins in the control of plant development, their biochemical functions, their interplay in maintaining stable expression states of their target genes, and point out future directions which may help our understanding of PcG and trxG function in plants.  相似文献   

17.
18.
19.
20.
The gene encoding the membrane occupation and recognition nexus protein MORN1 is conserved across the Apicomplexa. In Toxoplasma gondii, MORN1 is associated with the spindle poles, the anterior and posterior rings of the inner membrane complex (IMC). The present study examines the localization of MORN1 during the coccidian development of T. gondii and three Eimeria species (in the definitive host) and erythrocytic schizogony of Plasmodium falciparum. During asexual proliferation, MORN1 is associated with the posterior ring of the IMCs of the multiple daughters forming during T. gondii endopolygeny and schizogony in Eimeria and P. falciparum. Furthermore, the expression of P. falciparum MORN1 protein peaked in late schizogony. These data fit a model with a conserved role for MORN1 during IMC assembly in all variations of asexual development. An important new observation is the reactivity of MORN1 antibody with certain sexual stages in T. gondii and Eimeria species. Here MORN1 is organized as a ring-like structure where the microgametes bud from the microgametocyte while in mature microgametes it is present near the flagellar basal bodies and mitochondrion. These observations suggest a conserved role for MORN1 in both asexual and sexual development across the Apicomplexa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号