首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Continuous passive motion manifests therapeutic effects on inflamed articular joints by an as-yet-unknown mechanism. Here, we show that application of cyclic tensile stress (CTS) in vitro abrogates the catabolic effects of IL-1beta on chondrocytes. The effects of CTS are mediated by down-regulation of IL-1beta-dependent inducible NO production, and are directly attributed to the inhibition of inducible NO synthase (iNOS) mRNA expression and protein synthesis. The inhibition of iNOS induction by CTS is paralleled by abrogation of IL-1beta-induced down-regulation of proteoglycan synthesis. Furthermore, CTS inhibits iNOS expression and up-regulates proteoglycan synthesis at concentrations of IL-1beta frequently observed in inflamed arthritic joints, suggesting that the actions of CTS may be clinically relevant in suppressing the sustained effects of pathological levels of IL-1beta in vivo. These results are the first to demonstrate that mechanisms of the intracellular actions of CTS in IL-1beta-activated chondrocytes are mediated through inhibition of a key molecule in the signal transduction pathway that leads to iNOS expression.  相似文献   

2.
Interleukin 1 (IL-1), produced by both synovial cells and chondrocytes, plays a pivotal role in the pathogenesis of cartilage destruction in osteoarthritis (OA). We examined the specific expression and function of IL-1 receptor family-related genes in human joint tissues. Gene array analysis of human normal and OA-affected cartilage showed mRNA expression of IL-1 receptor accessory protein (IL-1RAcp) and IL-1 type I receptor (IL-1RI), but not IL-1 antagonist (IL-1ra) and IL-1 type II decoy receptor (IL-1RII). Similarly, human synovial and epithelial cells showed an absence of IL-1RII mRNA. Functional genomic analyses showed that soluble (s) IL-1RII, at picomolar concentrations, but not soluble TNF receptor:Fc, significantly inhibited IL-1beta-induced nitric oxide (NO) and/or prostaglandin E(2) production in chondrocytes, synovial and epithelial cells. In OA-affected cartilage, the IC(50) for inhibition of NO production by sIL-1RII was 2 log orders lower than that for sIL-1RI. Human chondrocytes that overexpressed IL-1RII were resistant to IL-1-induced IL-1beta mRNA accumulation and inhibition of proteoglycan synthesis. In osteoarthritis, deficient expression by chondrocytes of innate regulators or antagonists of IL-1 such as IL-1ra and IL-1RII (soluble or membrane form) may allow the catabolic effects of IL-1 to proceed unopposed. The sensitivity of IL-1 action to inhibition by sIL-1RII has therapeutic implications that could be directed toward correcting this unfavorable tissue(s) dependent imbalance.  相似文献   

3.
4.
5.
6.
7.
8.
Interleukin-1 induces release of NO and PGE(2) and production of matrix degrading enzymes in chondrocytes. In osteoarthritis (OA), IL-1 continually, or episodically, acts on chondrocytes in a paracrine and autocrine manner. Human chondrocytes in chondron pellet culture were treated chronically (up to 14 days) with IL-1beta. Chondrons from OA articular cartilage were cultured for 3 weeks before treatment with IL-1beta (0.05-10 ng/ml) for an additional 2 weeks. Spontaneous release of NO and IL-1beta declined over the pretreatment period. In response to IL-1beta (0.1 ng/ml), NO and PGE(2) release was maximal on Day 2 or 3 and then declined to near basal level by Day 14. Synthesis was recovered by addition of 1 ng/ml IL-1beta on Day 11. Expression of inducible nitric oxide synthase (iNOS), detected by immunofluorescence, was elevated on Day 2 and declined through Day 14, which coordinated with the pattern of NO release. On the other hand, IL-1beta-induced MMP-13 synthesis was elevated on Day 3, declined on Day 5, and then increased again through Day 14. IL-1beta increased glucose consumption and lactate production throughout the treatment. IL-1beta stimulated proteoglycan degradation in the early days and inhibited proteoglycan synthesis through Day 14. Chondron pellet cultures from non-OA cartilage released the same amount of NO but produced less PGE(2) and MMP-13 in response to IL-1beta than OA cultures. Like the OA, IL-1beta-induced NO and PGE(2) release decreased over time. In conclusion, with prolonged exposure to IL-1beta, human chondrocytes develop selective tolerance involving NO and PGE(2) release but not MMP-13 production, metabolic activity, or matrix metabolism.  相似文献   

9.
We have previously shown that green tea polyphenols inhibit the onset and severity of collagen II-induced arthritis in mice. In the present study, we report the pharmacological effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), on interleukin-1 beta (IL-1 beta)-induced expression and activity of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in human chondrocytes derived from osteoarthritis (OA) cartilage. Stimulation of human chondrocytes with IL-1 beta (5 ng/ml) for 24 h resulted in significantly enhanced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) when compared to untreated controls (p <.001). Pretreament of human chondrocytes with EGCG showed a dose-dependent inhibition in the production of NO and PGE(2) by 48% and 24%, respectively, and correlated with the inhibition of iNOS and COX-2 activities (p <.005). In addition, IL-1 beta-induced expression of iNOS and COX-2 was also markedly inhibited in human chondrocytes pretreated with EGCG (p <.001). Parallel to these findings, EGCG also inhibited the IL-1 beta-induced LDH release in chondrocytes cultures. Overall, the study suggests that EGCG affords protection against IL-1 beta-induced production of catabolic mediators NO and PGE(2) in human chondrocytes by regulating the expression and catalytic activity of their respective enzymes. Furthermore, our results also indicate that ECGC may be of potential therapeutic value for inhibiting cartilage resorption in arthritic joints.  相似文献   

10.
11.
Prolonged and excessive inflammation is implicated in resistance to the biological actions of IGF-I and contributes to the pathophysiology of neurodegenerative, metabolic, and muscle-wasting disorders. IL-10 is a critical anti-inflammatory cytokine that restrains inflammatory responses in macrophages and T cells by inhibiting cytokine and chemokine synthesis and reducing expression of their receptors. Here we demonstrate that IL-10 plays a protective role in nonhematopoietic cells by suppressing the ability of exogenous IL-1beta to inhibit IGF-I-induced myogenin and myosin heavy chain expression in myoblasts. This action of IL-10 is not caused by impairment of IL-1beta-induced synthesis of IL-6 or the ability of IL-1beta to activate two members of the MAPK family, ERK1/2 and p38. Instead, this newly defined protective role of IL-10 occurs by specific reversal of IL-1beta activation of the JNK kinase pathway. IL-10 blocks IL-1beta-induced phosphorylation of JNK, but not ERK1/2 or p38, indicating that only the JNK component of the IL-1beta-induced MAPK signaling pathway is targeted by IL-10. This conclusion is supported by the finding that a specific JNK inhibitor acts similarly to IL-10 to restore IGF-I-induced myogenin expression, which is suppressed by IL-1beta. Collectively, these data demonstrate that IL-10 acts in a novel, nonclassical, protective manner in nonhematopoietic cells to inhibit the IL-1beta receptor-induced JNK kinase pathway, resulting in prevention of IGF-I resistance.  相似文献   

12.
Osteoarthritis-affected cartilage exhibits enhanced expression of fibronectin (FN) and osteopontin (OPN) mRNA in differential display and bioinformatics screen. Functional genomic analysis shows that the engagement of the integrin receptors alpha 5 beta 1 and alpha v beta 3 of FN and OPN, respectively, have profound effects on chondrocyte functions. Ligation of alpha 5 beta 1 using activating mAb JBS5 (which acts as agonist similar to FN N-terminal fragment) up-regulates the inflammatory mediators such as NO and PGE2 as well as the cytokines, IL-6 and IL-8. Furthermore, up-regulation of these proinflammatory mediators by alpha 5 beta1 integrin ligation is mediated via induction and autocrine production of IL-1 beta, because type II soluble IL-1 decoy receptor inhibits their production. In contrast, alpha v beta 3 complex-specific function-blocking mAb (LM609), which acts as an agonist similar to OPN, attenuates the production of IL-1 beta, NO, and PGE2 (triggered by alpha 5 beta 1, IL-1 beta, IL-18, or IL-1 beta, TNF-alpha, plus LPS) in a dominant negative fashion by osteoarthritis-affected cartilage and activated bovine chondrocytes. These data demonstrate a cross-talk in signaling mechanisms among integrins and show that integrin-mediated "outside in" and "inside out" signaling very likely influences cartilage homeostasis, and its deregulation may play a role in the pathogenesis of osteoarthritis.  相似文献   

13.
Cytokines released at sites of inflammation and infection can alter the normal processes of cartilage turnover, resulting in pathologic destruction or formation. Interleukin (IL)-1beta plays a central role in the pathophysiology of cartilage damage and degradation in arthritis. In the present study, we examined the effect of IL-1beta on the expression of IL-1beta, IL-6, IL-8, IL-11, tumor necrosis factor-alpha (TNF-alpha), and their receptors in human chondrocytes. The cells were cultured either with or without 100 U/ml of IL-1beta for up to 28 days. The level of expression of the cytokines and their receptors was estimated by determining mRNA levels using real-time PCR or by determining protein levels using ELISA. The expression of IL-1beta, IL-8, and TNF-alpha markedly increased in the presence of IL-1beta after day 14 of culture. The expression of IL-6 and IL-11 increased greatly in the presence of IL-1beta on day 1 and after day 14 of culture. The expression of IL-1beta, IL-8, IL-11, and TNF-alpha receptors significantly decreased in the presence of IL-1beta after day 14 of culture, whereas the expression of IL-6 receptor significantly increased. The expression of these cytokines, except for IL-6, decreased with the addition of human IL-1 receptor antagonist. These results suggest that IL-1beta promotes the resolution system of cartilage matrix turnover through an increase in inflammatory cytokine production by chondrocytes and that it also may promote the autocrine action of IL-6 through an increase in IL-6 receptor expression in the cells.  相似文献   

14.
The 29-kDa amino-terminal fibronectin fragment (FN-f) has a potent chondrolytic effect and is thought to be involved in cartilage degradation in arthritis. However, little is known about signal transduction pathways that are activated by FN-f. Here we demonstrated that FN-f induced nitric oxide (NO) production from human articular chondrocytes. Expression of inducible nitric-oxide synthase (iNOS) mRNA and NO production were observed at 6 and 48 h after FN-f treatment, respectively. Interleukin-1beta (IL-1beta) mRNA up-regulation was stimulated by FN-f in human chondrocytes. To address the possibility that FN-f-induced NO release is mediated by IL-1beta production, the effect of IL-1 receptor antagonist (IL-1ra) was determined. IL-1ra partially inhibited FN-f-induced NO release although it almost completely inhibited IL-1beta-induced NO release. Tyrosine phosphorylation of focal adhesion kinase was induced transiently by FN-f treatment. Blocking antibodies to alpha(5) or beta(1) integrin and Arg-Gly-Asp-containing peptides did not inhibit FN-f-induced NO production. PP2, a Src family kinase inhibitor, or cytochalasin D, which selectively disrupts the network of actin filaments, inhibited both FAK phosphorylation and NO production induced by FN-f, but the phosphatidylinositol 3-kinase inhibitor wortmannin had no effect. Analysis of mitogen-activated protein kinases (MAPK) showed activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase, and p38 MAPK. High concentrations of SB203580, which inhibit both JNK and p38 MAPK, and PD98059 a selective inhibitor of MEK1/2 that blocks ERK activation, inhibited FN-f induced NO production. These data suggest that focal adhesion kinase and MAPK mediate FN-f induced activation of human articular chondrocytes.  相似文献   

15.
Interleukin-1beta (IL-1beta) elicits the expression of inflammatory mediators through a mechanism involving the CD44 receptor. Hyaluronan (HA) depolymerization also contributes to CD44 activation. This study investigated the potential of HA fragments, obtained by hyaluronidase (HYAL) treatment, as mediators of CD44 activation on IL-1beta-induced inflammation in mouse chondrocytes.mRNA and related protein levels were measured for CD44, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in chondrocytes, treated or untreated with IL-1beta, either with or without the addition of HYAL. The level of NF-kB activation was also assayed.CD44 mRNA expression was higher than controls in chondrocytes treated with IL-1beta. IL-1beta also induced NF-kB up-regulation and increased TNF-alpha, IL-6, MMP-13 and iNOS expression. Different effects resulted from HYAL treatment. Treatment of chondrocytes exposed to IL-1beta with HYAL synergistically increased the same parameters up-regulated by IL-1beta, while the same parameters were increased by HYAL in chondrocytes not exposed to IL-1beta but to a lesser extent. Specific CD44 blocking antibody and hyaluronan binding protein (HABP), which inhibit HA activity, were used to confirm CD44 to be the target of IL-1beta action through HA mediation. HA levels and molecular size further confirm the role of degraded HA.These findings suggest that IL-1beta exerts inflammatory activity via CD44 by the mediation of HA fragments derived from HA depolymerization.  相似文献   

16.
17.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to inhibit the production and the effects of proinflammatory cytokines. Since interleukin-1beta (IL-1beta) directly mediates cartilage degradation in osteoarthritis, we investigated the capability of PPARgamma ligands to modulate IL-1beta effects on human chondrocytes. RT-PCR and Western blot analysis revealed that PPARgamma expression was decreased by IL-1beta. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), in contrast to troglitazone, was highly potent to counteract IL-1beta-induced cyclooxygenase-2 and inductible nitric oxide synthase expression, NO production and the decrease in proteoglycan synthesis. Western blot and gel-shift analyses demonstrated that 15d-PGJ2 inhibited NF-kappaB activation, while troglitazone was ineffective. Although 15d-PGJ2 attenuated activator protein-1 binding on the DNA, it potentiated c-jun migration in the nucleus. The absence or the low effect of troglitazone suggests that 15d-PGJ2 action in human chondrocytes is mainly PPARgamma-independent.  相似文献   

18.
19.
20.
Osteoarthritis (OA) is a major disability of elderly people. Sesamin is the main compound in Sesamun indicum Linn., and it has an anti-inflammatory effect by specifically inhibiting Δ5-desaturase in polyunsaturated fatty acid biosynthesis. The chondroprotective effects of sesamin were thus studied in a porcine cartilage explant induced with interleukin-1beta (IL-1β) and in a papain-induced osteoarthritis rat model. With the porcine cartilage explant, IL-1β induced release of sulfated-glycosaminoglycan (s-GAG) and hydroxyproline release, and this induction was significantly inhibited by sesamin. This ability to inhibit these processes might be due to its ability to decrease expression of MMP-1, -3 and -13, which can degrade both PGs and type II collagen, both at the mRNA and protein levels. Interestingly, activation of MMP-3 might also be inhibited by sesamin. Moreover, in human articular chondrocytes (HACs), some pathways of IL-1β signal transduction were inhibited by sesamin: p38 and JNK. In the papain-induced OA rat model, sesamin treatment reversed the following pathological changes in OA cartilage: reduced disorganization of chondrocytes in cartilage, increased cartilage thickness, and decreased type II collagen and PGs loss. Sesamin alone might increase formation of type II collagen and PGs in the cartilage tissue of control rats. These results demonstrate that sesamin efficiently suppressed the pathological processes in an OA model. Thus, sesamin could be a potential therapeutic strategy for treatment of OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号