首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Articular cartilage lacks self-repair capacity. Currently, two methods employing autologous cells are used to stimulate repair of articular cartilage. Micro-fracture induced repair induces autologous mesenchymal cell migration from bone marrow. Autologous chondrocytes' transplantation involves in vitro expansion of chondrocytes, and later implantation. In 15 patients de-differentiated chondrocytes obtained by cartilage biopsy were compared to cells derived from repair tissue induced by micro-fracture. These patients all underwent micro-fracture during the cartilage biopsy procedure. Autologous chondrocytes' transplantation was performed at least two months later then the biopsy. Tissue bits from articular cartilage and micro-fracture repair tissue were incubated in-vitro and explant cell cultures established. The cell cultures were assessed by immunohistochemistry and induced to differentiate. Differentiation into bone tissue was stimulated by addition of basic fibroblast growth factor, ascorbate and dexamethasone. High density (micro-mass) culture was used to stimulate chondrogenesis. Both cell cultures consist of mesenchymal progenitors as indicated by fibroblast growth factor receptor 3 expression and anti-CD-34+ antibodies. However, the micro-fracture generated repair tissue consists of osteocalcin-expressing cells destined to become bone. Collagen type II expression does not occur in these cells compared to autologous chondrocytes. Inducible nitric oxide synthase expression by microfracture cells is likely to damage surrounding articular cartilage in vivo. In conclusion, cells recruited by micro-fracture are inferior for cartilage regeneration purposes to those from cartilage biopsies.  相似文献   

2.
The human amniotic membrane (HAM) is an abundant and readily obtained tissue that may be an important source of scaffold for transplanted chondrocytes in cartilage regeneration in vivo. To evaluate the potential use of cryopreserved HAMs as a support system for human chondrocytes in human articular cartilage repair. Chondrocytes were isolated from human articular cartilage, cultured and grown on the chorionic basement membrane side of HAMs. HAMs with chondrocytes were then used in 44 in vitro human osteoarthritis cartilage repair trials. Repair was evaluated at 4, 8 and 16 weeks by histological analysis. Chondrocytes cultured on the HAM revealed that cells grew on the chorionic basement membrane layer, but not on the epithelial side. Chondrocytes grown on the chorionic side of the HAM express type II collagen but not type I, indicating that after being in culture for 3–4 weeks they had not de-differentiated into fibroblasts. In vitro repair experiments showed formation on OA cartilage of new tissue expressing type II collagen. Integration of the new tissue with OA cartilage was excellent. The results indicate that cryopreserved HAMs can be used to support chondrocyte proliferation for transplantation therapy to repair OA cartilage.  相似文献   

3.
4.
Collagen phenotypes were determined for rabbit articular chondrocytes in cartilage slices and first through fifth monolayer cultures. During the first 24 hr of slice culture, chondrocytes exhibited the following collagen phenotype: 96% type II, 3% X2Y and 1% type III. In primary monolayer culture, no other types of collagen were added to this differentiated chondrocyte phenotype; however, the synthesis per cell of each of the expressed collagens was stimulated. By the fifth day of primary culture, X2Y synthesis increased 10 fold, and by the eighth day, a further 4 fold. In contrast, the synthesis of collagen types II and III showed no change by the fifth day, but increased 7 fold by the eighth day. These results suggest independent regulation of X2Y in this situation. In a separate experiment, first through fifth cultures were studied. The synthesis per cell of type II collagen declined steadily and essentially ceased by the fifth culture, indicating the loss of differentiated function by these chondrocyte progeny. The loss of type II synthesis was not quantitatively replaced by the synthesis of type I trimer and type I collagen which was first detected in the third culture. While these qualitative changes in phenotype occurred, the stimulated rate of type III collagen synthesis did not change and that of X2Y declined only slightly. Thus the termination of type II synthesis did not significantly alter the synthesis of the other collagens produced by differentiated chondrocytes. The final “de-differentiated” phenotype was 41% type I, 25% X2Y, 20% type I trimer, 13% type III and 1% type II.  相似文献   

5.
6.
Cultivation of phenotypically stable auricular chondrocytes will have applications in autologous chondrocyte transplantation and reconstructive surgery of cartilage. Chondrocytes grown in monolayer culture rapidly dedifferentiate assuming a fibroblast-like morphology and lose their cartilage-specific pattern of gene expression. Three-dimensional high-density culture models mimic more closely the in vivo conditions of cartilage. Therefore, this study was undertaken to test whether the high-density cultures might serve as a suitable model system to acquire phenotypically and functionally differentiated auricular chondrocytes from porcine cartilage. Freshly isolated porcine auricular chondrocytes were cultured for 7 passages in monolayer culture. From each passage (passage 0 and 1-7) cells were introduced to high-density cultures and examined by transmission electron microscopy. Western blotting was used to analyse the expression of cartilage-specific markers, such as collagen type II and cartilage specific proteoglycan, fibronectin, cell adhesion and signal transduction receptor beta1-integrin, matrix metalloproteinases (MMP-9, MMP-13), cyclo-oxygenase (COX)-2 and the apoptosis commitment marker, activated caspase-3. When dedifferentiated auricular chondrocytes from monolayer passages 0-4 were cultured in high-density culture, they recovered their chondrocytic phenotype and formed cartilage nodules surrounded by fibroblast-like cells and synthesised collagen type II, proteoglycans, fibronectin and beta1-integrins. However, chondrocytes from monolayer passages 5-7 did not redifferentiate to chondrocytes even when transferred to high-density culture, and did not synthesize a chondrocyte-specific extracellular matrix. Instead, they produced increasing amounts of MMP-9, MMP-13, COX-2, activated caspase-3 and underwent apoptosis. Three-dimensional high-density cultures may therefore be used to obtain sufficient quantities of fully differentiated auricular chondrocytes for autologous chondrocyte transplantation and reconstructive plastic surgery.  相似文献   

7.
Tissue engineering of articular cartilage from chondrocytes or stem cells is considered to be a potential aspect in the treatment of cartilage defects. In order to optimize culture conditions the influence of low oxygen tension (5%) - single or in combination with intermittent hydrostatic pressure (HP: 30/2 min on/off loading; 0.2 MPa) - on the biosynthetic activity (sulfate and proline incorporation) of human osteoarthritic chondrocytes cultured on collagen I/III membranes was investigated. Additionally, chondrogenesis from high density or monolayer cultures of bovine adherent bone marrow cells (aBMC) with and without chondrogenic medium supplements (CM) was analyzed by RT-PCR (mRNA expression of aggrecan and collagen type II). We could show that low oxygen tension increases significantly the biosynthesis of collagen I/III membrane-associated chondrocytes and even higher under co-stimulation with HP. While there is no chondrogenesis in monolayer cultures, CM induces expression of cartilage matrix molecules in high density cultures of aBMC which is even increased under the influence of low oxygen tension. Both, low oxygen tension and HP without CM are alone not sufficient stimuli for chondrogenesis. It can be concluded that low oxygen tension and HP might be useful tools in cartilage tissue engineering and that these physico-chemical factors promote but do not induce chondrogenesis under the given conditions.  相似文献   

8.
This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose‐derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven‐mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF‐β1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4‐ and 6.1‐fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF‐β1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530‐fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold‐based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose‐derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393–401. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Auricular cartilage is an attractive potential source of cells for many tissue engineering applications. However, there are several requirements that have to be fulfilled in order to develop a suitable tissue engineered implant. Animal experiments serve as important tools for validating novel concepts of cartilage regeneration; therefore rabbit auricular chondrocytes were studied. Various parameters including isolation procedures, passage number, rate of proliferation and gene expression profile for major extracellular matrix components were evaluated in order to assess the potential use of elastic chondrocytes for tissue engineering. Chondrocytes were isolated from rabbit ear cartilage and grown in monolayer cultures over four passages. Yields of harvested cells and proliferation were analysed from the digestion step to the fourth passage, and changes in phenotype were monitored. The proliferation capacity of cell cultures decreased during cultivation and was accompanied by enlargement of cells, this phenomenon being especially evident in the third and fourth passages. The expression of cartilage specific genes for collagen type II, aggrecan and cartilage non-specific collagen type I was determined. The mRNA levels for all three genes were obviously lower in the primo culture than immediately after isolation. During subsequent cultivation the expression of collagen type II decreased further, while there were only slight changes in expression of aggrecan and collagen type I. This study provides a valuable basis for testing of different tissue engineering applications in rabbit model, where auricular chondrocytes are considered as cell source.  相似文献   

10.
Immunohistochemical studies of the chick columella have shown that the extracellular matrix of this ossicular cartilage template is composed largely of type II collagen. As development proceeds, synthesis of type X collagen, a hypertrophic cartilage-specific molecule, is initiated by endochondral chondrocytes within the zone of cartilage cell hypertrophy. Subsequently, these cells and their surrounding extracellular matrix are removed, resulting in marrow cavity formation. We have examined which of these processes are programmed within the columella chondrocytes themselves, and which require involvement of exogenous factors. Prehypertrophic columella from 12-day chick embryos were grown either in organ culture on Nuclepore filters or as explants on the chorioallantoic membrane of host embryos. Chondrocytes from the same source were grown in monolayer cell cultures. In both organ culture and cell culture, chondrocytes developed to the stage at which some of them entered the hypertrophic program and initiated the production of type X collagen as determined by immunofluorescence histochemistry with a monoclonal antibody specific for that collagen type. The organ cultures, however, did not progress to the next stage, in which detectable removal of the type X collagen-containing matrix occurs. When identical columella were grown on the chorioallantoic membrane of host chicks, the type X collagen-containing matrix which formed was rapidly removed, resulting in the formation of a marrow cavity. Thus, progression of endochondral chondrocytes to the deposition of type X collagen-containing matrix seems to be programmed within the cells themselves. Subsequent removal of this matrix requires the involvement of exogenous factors.  相似文献   

11.
Currently, autologous chondrocyte transplantation (ACT) is used to treat traumatic cartilage damage or osteochondrosis dissecans, but not degenerative arthritis. Since substantial refinements in the isolation, expansion and transplantation of chondrocytes have been made in recent years, the treatment of early stage osteoarthritic lesions using ACT might now be feasible. In this study, we determined the gene expression patterns of osteoarthritic (OA) chondrocytes ex vivo after primary culture and subculture and compared these with healthy chondrocytes ex vivo and with articular chondrocytes expanded for treatment of patients by ACT. Gene expression profiles were determined using quantitative RT-PCR for type I, II and X collagen, aggrecan, IL-1β and activin-like kinase-1. Furthermore, we tested the capability of osteoarthritic chondrocytes to generate hyaline-like cartilage by implanting chondrocyte-seeded collagen scaffolds into immunodeficient (SCID) mice. OA chondrocytes ex vivo showed highly elevated levels of IL-1β mRNA, but type I and II collagen levels were comparable to those of healthy chondrocytes. After primary culture, IL-1β levels decreased to baseline levels, while the type II and type I collagen mRNA levels matched those found in chondrocytes used for ACT. OA chondrocytes generated type II collagen and proteoglycan-rich cartilage transplants in SCID mice. We conclude that after expansion under suitable conditions, the cartilage of OA patients contains cells that are not significantly different from those from healthy donors prepared for ACT. OA chondrocytes are also capable of producing a cartilage-like tissue in the in vivo SCID mouse model. Thus, such chondrocytes seem to fulfil the prerequisites for use in ACT treatment.  相似文献   

12.
Chondrocytes are easily de-differentiated when cultured in monolayer, and tissue-engineered cartilage can be generated by seeding chondrocytes onto three-dimensional porous synthetic biodegradable polymers. In this study, we investigated the biochemical and molecular aspects of chondrocytes in a monolayer-culture system and selected the optimal subculture passages based on their de-differentiation. We also compared two commonly used synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA), for their suitability as scaffolds for artificial cartilage. De-differentiated chondrocytes were observed after two passages. These results suggested that the first cell passage was optimal for seeding as only a few chondrocytes secreted extracellular matrix components to form homogeneously compact cartilage. Substantially increased glycosaminoglycan and total collagen levels revealed that PLGA scaffolds were a better option for inducing cartilage tissue formation compared to the PLA scaffolds. Histological and immunohistochemical results showed that chondrocytes seeded into PLGA retained their morphological phenotype to a greater extent than those seeded into PLA.  相似文献   

13.
Articular cartilage is a permanent tissue whose cells do not normally take part in the endochondral ossification process. To determine whether articular chondrocytes possess the potential to express traits associated with this process such as cell hypertrophy and type X collagen, chondrocytes were isolated from adult chicken tibial articular cartilage and maintained in long-term suspension cultures. As a positive control in these experiments, we used parallel cultures of chondrocytes from the caudal portion of chick embryo sternum. Both articular and sternal chondrocytes readily proliferated and progressively increased in size with time in culture. Many had undergone hypertrophy by 4-5 weeks. Analysis of medium-released collagenous proteins revealed that both articular and sternal chondrocytes initiated type X collagen synthesis between 3 and 4 weeks of culture; synthesis of this macromolecule increased with further growth. Immunofluorescence analysis of 5-week-old cultures showed that about 15% of articular chondrocytes and 30% of sternal chondrocytes produced type X collagen; strikingly, there appeared to be no obvious relationship between type X collagen production and cell size. The results of this study show that articular chondrocytes from adult chicken tibia possess the ability to express traits associated with endochondral ossification when exposed to a permissive environment. They suggest also that the process of cell hypertrophy and initiation of type X collagen synthesis are independently regulated both in articular and sternal chondrocytes.  相似文献   

14.
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3α mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.  相似文献   

15.
A micromass culture (MM-C) system of primary immature chondrocytes for functional analysis of soluble factors involved in the maturation step of cartilage was previously developed. Ectopically expressed BMP-2 was shown to induce the expression of the Ihh and Noggin genes. Here it is demonstrated that, upon longer culture, secreted bone morphogenetic protein-2 (BMP-2) further promotes the maturation step as judged by the induction of type X collagen and BMP-6 expression, which are known to be detectable in the later phase of cartilage maturation. Induction of all of these genes by secreted BMP-2 was not inhibited by ectopic expression of parathyroid hormone-related peptide (PTHrP) induced by retrovirus vector infection, although the same virus vector showed strong inhibitory effects on the expression of type X collagen gene or alkaline phosphatase activity in mature chondrocytes. These results suggest that the maturation-promoting activity exhibited by BMP-2 is dominant over the suppressive effect of PTHrP in immature chondrocytes. When the BMP-6 gene was introduced into the same virus vector as that used for BMP-2, it induced the same sets of genes (Ihh, Noggin, type X collagen and endogenous BMP-6) as BMP-2 did. These results also suggest that BMP-6 would autonomously maintain and/or promote a later stage of chondrocytic maturation.  相似文献   

16.
Articular cartilage is often used for research on cartilage tissue engineering. However, ear cartilage is easier to harvest, with less donor-site morbidity. The aim of this study was to evaluate whether adult human ear chondrocytes were capable of producing cartilage after expansion in monolayer culture. Cell yield per gram of cartilage was twice as high for ear than for articular cartilage. Moreover, ear chondrocytes proliferated faster. Cell proliferation could be further stimulated by the use of serum-free medium with Fibroblast Growth Factor 2 (FGF2) in stead of medium with 10% serum. To evaluate chondrogenic capacity, multiplied chondrocytes were suspended in alginate and implanted subcutaneously in athymic mice. After 8 weeks the constructs demonstrated a proteoglycan-rich matrix that contained collagen type II. Constructs of ear chondrocytes showed a faint staining for elastin. Quantitative RT-PCR revealed that expression of collagen type II was 2-fold upregulated whereas expression of collagen type I was 2-fold down regulated in ear chondrocytes expanded in serum-free medium with FGF2 compared to serum-containing medium. Expression of alkaline phosphatase and collagen type X were low indicating the absence of terminal differentiation. We conclude that ear chondrocytes can be used as donor chondrocytes for cartilage tissue engineering. Furthermore, it may proof to be a promising alternative cell source to engineer cartilage for articular repair.  相似文献   

17.
Gene transfer into cultured chondrocytes by using adenoviral vectors has potential applications in treating cartilage disorders. The present study was undertaken to compare and optimize two chondrocyte culture conditions for adenoviral transduction efficacy by using primary human articular chondrocytes cultivated either directly in a monolayer condition or as outgrowths from alginate-stored chondrocyte cultures. Isolated primary chondrocytes from human articular cartilage were either immediately transduced with an EGFP (enhanced green fluorescent protein)-gene-bearing adenoviral vector (1,000 and 3,000 virus particles/cell) or cultured in alginate before transduction. Immunohistochemistry and flow cytometric analysis were employed to determine the expression of extracellular matrix proteins and of the αvβ5 integrin receptor involved in adenoviral cell entry. Monolayer chondrocytes exhibited moderate transduction rates (mean 22.2% and 46.9% EGFP-positive cells at 1,000 and 3,000 virus particles/cell by 72 h post-transduction), whereas alginate-derived chondrocytes revealed significantly higher transduction efficacies (95.7% and 99%). Both monolayer and alginate-derived chondrocytes expressed αvβ5 integrin, type II collagen and cartilage proteoglycans. The mean fluorescence intensity of type II collagen was significantly higher in the alginate-derived chondrocytes, whereas that of αvβ5 integrin was higher in the monolayer chondrocytes. Our results indicate that transduction efficacy is independent of αvβ5 integrin expression levels in chondrocytes. Moreover, adenoviral transduction of alginate-derived chondrocytes is more efficient than that for monolayer chondrocytes and may be a suitable tool to achieve sufficient numbers of transduced and differentiated chondrocytes for experimental applications and cartilage repair. Dr. Gundula Schulze-Tanzil is supported by a grant awarded by the Rahel Hirsh Foundation from the Charité Medical Schools Berlin. The study was supported by a grant from the Deutsche Arthrosehilfe e.V.  相似文献   

18.
Membrane-bound transferrin-like protein (MTf) is expressed in parallel with the expression of cartilage-characteristic genes during differentiation of chondrocytes, and the MTf level is much higher in cartilage than in other tissues. To investigate the role of MTf in cartilage, we examined the effects of growth factors on MTf expression in mouse prechondrogenic ATDC5 cells and the effect of MTf overexpression on differentiation of ATDC5 and mouse pluripotent mesenchymal C3H10T1/2 cells. In ATDC5 cultures, bone morphogenetic protein-2 and transforming growth factor-beta as well as insulin induced MTf mRNA expression when these peptides induced chondrogenic differentiation. Forced expression of rabbit MTf in ATDC5 cells induced aggrecan, type II collagen, matrilin-1, type X collagen mRNAs, and cell-shape changes from fibroblastic cells to spherical chondrocytes. Accordingly, the synthesis and accumulation of proteoglycans were higher in MTf-expressing cultures than in control cultures. These effects of MTf overexpression correlated with the MTf protein level on the cell surface and decreased in the presence of anti-MTf antibody. However, the aggrecan mRNA level in the ATDC5 cells overexpressing MTf was lower than that in wild type ATDC5 cells exposed to 10 microg/ml insulin. MTf overexpression in C3H10T1/2 cells also induced aggrecan and/or type II collagen mRNA but not the spherical phenotype. These findings suggest that the expression of MTf on the cell surface facilitates the differentiation of prechondrogenic cells, although MTf overexpression alone seems to be insufficient to commit pluripotent mesenchymal cells to the chondrocyte lineage.  相似文献   

19.
Articular cartilage has only very limited potential for self-repair and regeneration. For this reason, various tissue engineering approaches have been developed to generate cartilage tissue in vitro. Usually, most strategies require ascorbate supplementation to promote matrix formation by isolated chondrocytes. In this study, we evaluate and compare the effect of different ascorbate forms and concentrations on in vitro cartilage formation in porcine chondrocyte high-density pellet cultures. l-ascorbate, sodium l-ascorbate, and l-ascorbate-2-phosphate were administered in 100 μM, 200 μM, and 400 μM in the culture medium over 16 days. Pellet thickness increased independently from the supplemented ascorbate form and concentration. Hydroxyproline content increased as well, but here, medium concentration of AsAP and low concentration of AsA showed a more pronounced effect. Proteoglycan and collagen formation were evaluated histologically and could be proven in all supplemented cultures. Non-supplemented cultures, however, showed no stable matrix formation at all. Effects on the gene expression pattern of cartilage marker genes (type I and type II collagen, aggrecan, and cartilage oligomeric matrix protein (COMP)) were studied by real-time RT-PCR and compared to non-supplemented control cultures. Expression level of cartilage marker genes was elevated in all cultures showing that dedifferentiation of chondrocytes could be prevented. Again, all supplementations caused a similar effect except for low concentration of AsA, which resulted in an even higher expression level of all marker genes. Besides that, we could not detect a pronounced difference between ascorbate and its derivates as well as between the different concentrations.  相似文献   

20.
Reexpression of aggrecan and type II collagen genes in dedifferentiated adult human articular chondrocytes (AHAC) in suspension culture varied widely depending on the specific lot of bovine serum used to supplement the culture medium. Some lots of serum provided strong induction of aggrecan and type II collagen expression by AHAC while others did not stimulate significant production of these hyaline cartilage extracellular matrix molecules even following several weeks in culture. Addition of 50 ng/ml insulin-like growth factor-I (IGF-I) to a deficient serum lot significantly enhanced its ability to induce aggrecan and type II collagen mRNA. Given this observation, IGF-I and other growth factors were tested in defined serum-free media for their effects on the expression of these genes. Neither IGF-I nor insulin nor transforming growth factor β (TGF-β) alone stimulated induction of aggrecan or type II collagen production by dedifferentiated AHAC. However, TGF-β1 or TGF-β2 combined with IGF-I or insulin provided a strong induction as demonstrated by RNase protection and immunohistochemical assays. Interestingly, type I collagen, previously shown to be downregulated in serum supplemented suspension cultures of articular chondrocytes, persisted for up to 12 weeks in AHAC cultured in defined medium supplemented with TGF-β and IGF-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号