首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The gene encoding human proinsulin has been fused in-frame with the E. coli alkaline phosphatase gene (pho A) (EC 3.1.3.1). Two constructions are described. One construction consists of the entire proinsulin gene fused to the 5'-terminal end of pho A. In the other construction a 42 base pair DNA fragment has been deleted from the 3'-terminal end of the proinsulin gene. The two purified fusion proteins are enzymatically active showing a specific activity of 10-15 U/mg and 18-25 U/mg, respectively. The first construction exhibited insulin antigenicity and was used to design a simple competitive ELISA for insulin. The lower detection limit was found to be at least 2.5 ng/ml. Both fusion proteins were also shown to have potential for use in a competitive ELISA for proinsulin.  相似文献   

2.
Native proinsulin belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its small size, a high proteolytic decay, and the necessity to form a native disulfide pattern. In the present study, human proinsulin was produced in the periplasm of E. coli as a fusion to ecotin, which is a small periplasmic protein of 16 kDa encoded by the host, containing one disulfide bond. The fusion protein was secreted to the periplasm and native proinsulin was determined by ELISA. Cultivation parameters were studied in parallel batch mode fermentations using E. coli BL21(DE3)Gold as a host. After improvement of fed-batch high density fermentation conditions, 153 mg fusion protein corresponding to 51.5mg native proinsulin was obtained per L. Proteins were extracted from the periplasm by osmotic shock treatment. The fusion protein was purified in one step by ecotin affinity chromatography on immobilized trypsinogen. After thrombin cleavage of the fusion protein, the products were separated by Ni-NTA chromatography. Proinsulin was quantified by ELISA and characterized by mass spectrometry. To evaluate the influence of periplasmic proteases, the amount of ecotin-proinsulin was determined in E. coli BL21(DE3)Gold and in a periplasmic protease deficient strain, E. coli SF120.  相似文献   

3.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

4.
The degradation in Escherichia coli of the recombinant serum-albumin-binding receptor derived from streptococcal protein G was investigated using a dual-affinity fusion approach. The proteolytic degradation of the receptor was characterized when fused to human proinsulin and human secretin. Several cleavages occurred at sequences not normally regarded as proteolytically sensitive, such as the dipeptide sequences Ile-Gly, Val-Ser and Ser-Ala. Depending on the fusion partner, large differences in the degradation of the albumin-binding domain were observed. Thus, susceptibility to proteolysis of a recombinant protein can be affected by a neighbouring domain.  相似文献   

5.
A multimerization strategy to improve yields upon recombinant production of the 31-aa human proinsulin C-peptide is presented. Gene fragments encoding the C-peptide were assembled using specific head-to-tail multimerization. DNA constructs encoding one, three or seven copies of the C-peptide gene, fused to a serum albumin binding affinity tag, were expressed intracellularly in Escherichia coli. The three fusion proteins were produced at similar levels (approximately 50 mg/l) and were proteolytically stable during production. Enzymatic digestion by trypsin-carboxypeptidase B treatment of the fusion proteins was shown to efficiently release native C-peptide, as determined by mass spectrometry, reverse-phase chromatography and a radioimmunoassay. The quantitative yields of C-peptide obtained from the three different fusion proteins suggest that this multimerization strategy could provide a cost-efficient production scheme for the C-peptide, and that this strategy could be useful also for production of other recombinant peptides.  相似文献   

6.
Expression of human cardiac-specific homeobox protein in Escherichia coli   总被引:2,自引:0,他引:2  
Human cardiac-specific homeobox protein cDNA (hCsx) was cloned into expression plasmid pET32a and fused with Escherichia coli thioredoxin (Trx). The Trx-Csx fusion protein was under the control of bacteriophage T7 promoter. When expressed in E. coli BL21(DE3), about half of the recombinant Trx-Csx products existed in the form of insoluble inclusion bodies. When coexpressed with human protein disulfide isomerase, more than 90% of Trx-Csx products accumulated in the soluble form in the cell lysate. The recombinant Csx fusion protein was purified by one-step metal-chelating affinity chromatography.  相似文献   

7.
In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain-intein tag for purification via a chitin-agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and β-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the ΔI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.  相似文献   

8.
Met-Lys-双C肽人胰岛素原基因的构建表达及分离纯化   总被引:2,自引:0,他引:2  
应用 P C R 定点突变方法构建编码 M et Lys 双 C 肽人胰岛素原基因,并在大肠杆菌中以包含体方式获得表达 表达产物经还原、重组、 Sephadex G 75 分离纯化,获得 M et Lys 双 C 肽人胰岛素原,经胰蛋白酶与羧肽酶 B的酶解, Resource T M Q 阴离子交换柱层析分离制备得人胰岛素,其放免活性、受体结合活性均与猪胰岛素相同   相似文献   

9.
We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.  相似文献   

10.
将胰岛素原基因融合到金色葡萄球菌蛋白A的基因上,构建成大肠杆菌中基因融合的外分泌表达载体。它能高效表达且有效地分泌表达产物。利用亲和层析能方便地从培养液中分离出融合蛋白。融合蛋白经CNBr裂解后,经反相HPLC分析,分离得到具有天然结构的胰岛素原并进行了鉴定。  相似文献   

11.
We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.  相似文献   

12.
人胰岛素原类似物(BKRA)基因的合成与表达   总被引:4,自引:0,他引:4  
为了利用基因工程生产胰岛素,按照已知的人胰岛素A、B链氨基酸序列和大肠杆菌偏爱的氨基酸密码子设计并合成了人胰岛素原类似物(BKRA)基因,其中以赖(K)-精(R)二肽编码区取代人胰岛素原C肽编码区.为了避免其编码蛋白在大肠杆菌中表达时被降解,通过人工接头将2个BKRA基因串联起来,接头部分氨基酸序列为Arg-Arg-Asn-Ser.将串联的BKRA基因克隆到表达载体pET-28a(+),实现了在大肠杆菌中的融合表达,表达产物以包含体形式存在,约占细菌总蛋白24%.表达产物氨基末端具有六组氨酸肽段,以HiTrap凝胶进行亲和层析,一步纯化可达纯度95%以上.放射免疫测定表明,纯化的融合蛋白具有胰岛素抗原活性.表明已构建成人胰岛素原类似物的高效表达菌株  相似文献   

13.
14.
人工优化设计并合成炭疽毒素保护性抗原第四结构域基因,并与噬菌体gⅢ蛋白N端结构域基因融合,在大肠杆菌中可溶性表达融合蛋白。结果表明合成了炭疽毒素保护性抗原第四结构域基因,并在大肠杆菌中获得了高效可溶性融合表达,可溶性表达产物占细菌总蛋白量的36%左右;经亲和层析纯化获得了重组蛋白;Western印迹分析表明,表达产物能与His单抗(重组蛋白羧基端带有6xHis)发生特异性结合反应。以上结果表明获得了炭疽毒素保护性抗原第四结构域,为利用人抗体库进行筛选抗炭疽毒素的人源性中和抗体奠定了基础。  相似文献   

15.
The production of human proinsulin in its disulfide-intact, native form in Escherichia coli requires disulfide bond formation and the periplasmic space is the favourable compartment for oxidative folding. However, the secretory expression of proinsulin is limited by its high susceptibility to proteolysis and by disulfide bond formation, which is rate-limiting for proinsulin folding. In this report we describe a method for the production of high amounts of soluble, native human proinsulin in E. coli. We fused proinsulin to the C-terminus of the periplasmic disulfide oxidoreductase DsbA via a trypsin cleavage site. As DsbA is the main catalyst of disulfide bond formation in E. coli, we expected increased yields of proinsulin by intra- or intermolecular catalysis of disulfide bond formation. In the context of the fusion protein, proinsulin was found to be stabilised, probably due to an increased solubility and faster disulfide bond formation. To increase the yield of DsbA-proinsulin in the periplasm, several parameters were optimised, including host strains and cultivation conditions, and in particular growth medium composition and supplement of low molecular weight additives. We obtained a further, about three-fold increase in the amount of native DsbA-proinsulin by addition of L-arginine or ethanol to the culture medium. The maximum yield of native human proinsulin obtained from the soluble periplasmic fraction after specific cleavage of the fusion protein with trypsin was 9.2 mg g(-1), corresponding to 1.8% of the total cell protein.  相似文献   

16.
Various methods have been investigated for the isolation and purification of fusion proteins of precursors of human insulin in the form of S-sulfonates, from the biomass of transformed Escherichia coli cells. Fusion proteins were prepared with different sizes and structures of the leader peptide and the poly-His position (inserted for purification by metal chelate affinity chromatography). The fusion proteins contained an IgG-binding B domain of protein A from Staphylococcus aureus at the N-terminus and an Arg residue between the leader peptide of the molecule and the proinsulin sequence, for trypsin cleavage of the leader peptide. Six residues of Cys in proinsulin allow the chemical modification of the protein as a (Cys-S-SO(-)(3))(6) derivative (S-sulfonate), which increases its polyelectrolytic properties and improves the efficiency of its isolation. Various methods of oxidative sulfitolysis were compared with catalysis by sodium tetrathionate or cystine and Cu2+ or Ni2+ ions. An optimum scheme for the isolation and purification of S-sulfonated fusion proteins was developed by the combination of metal-chelating affinity and ion-exchange chromatography. Highly purified (95%) S-sulfonated fusion protein was recovered which was 85% of the fusion protein contained in the biomass of E. coli cells. Folding of fusion protein S-sulfonate occurred with high yield (up to 90-95%). We found that the fusion protein-S-sulfonate has proinsulin-like secondary structure.This structure causes highly efficient fusion protein folding.  相似文献   

17.
The specific molecular interactions of alpha-helical peptide, human glucagon (i.e., intermolecular self-association and specific receptor-binding affinity) provided a rationale for using the glucagon as the fusion expression partner to achieve high productivity of foreign proteins both in vivo (in bacterial fusion-expression system) and in vitro (in affinity column chromatography). The fusion of glucagon peptide(s) effectively promoted homogeneous aggregate formation of recombinant proteins while avoiding intermolecular crosslinking by disulfide bridges. High sensitivity of the self-aggregation to sequence effects resulted from two distinct nonpolar domains of glucagon, determining specificity of molecular interaction and aggregate size of recombinant proteins. An N-terminal domain of glucagon molecule (Phe6-Tyr10-Tyr13) could be a certain hydrophobic moiety involved in intermolecular self-association (probably, via helix-helix docking), while a C-terminal domain (Phe22-Trp25-Leu26) seems to critically affect the oligomer size in the off-pathway aggregation of synthesized fusion proteins. An N-terminal extracellular domain of human glucagon receptor was recombinantly expressed in Escherichia coli, immobilized to a chromatography column, and efficiently renatured to a conformation that attains high specificity in interaction with N-terminus glucagon molecules of recombinant fusion proteins. Through column chromatography employing the receptor fragment as affinity ligand, the recombinant proteins were efficiently purified from total intracellular proteins, and the long-term ligand stability was evidently proven through multiple cyclic-purification experiments. Major scaffolds for using protein ligands are large-scale production in a low-cost expression system and long-term stable operation with selective-binding affinity. From this point of view, the extracellular fragment of human glucagon receptor used in this study seems to be a new potent ligand for fusion protein-based affinity chromatography.  相似文献   

18.
Direct expression of the cytokine receptor homology (CRH) domain of granulocyte-colony-stimulating factor (G-CSF) receptor is lethal to Escherichia coli. For the efficient and stable production of an active CRH domain in E. coli, we fused the CRH domain with different proteins, such as maltose-binding protein (MalE), glutathione S-transferase, and thioredoxin (Trx). Among these, Trx appeared to be the best in terms of the protein expression level, purification efficiency by affinity chromatography, and binding activity to its ligand, G-CSF. The yield of active Trx-CRH fusion protein increased about 200-fold compared to that of previously reported MalE-CRH fusion.  相似文献   

19.
Random oligonucleotide fragments were designed and amplified by PCR and fused with the activating domain of pGAD424 to construct a random peptide library. The DNA fragment encoding beta-lactamase was fused with the binding domain of pGBT9(+2). Subsequently, using yeast two-hybrid system we found two positive clones encoding peptides P1 and P2 that have the ability to bind beta-lactamase in vivo. The genes encoding P1 and P2 were cloned into pGEX-4T-1. GST-peptide fusion proteins were expressed in Escherichia coli and isolated by glutathione-Sepharose 4B affinity chromatography. Finally, P1 and P2 were cleaved from the fusion protein with thrombin and purified by ultrafiltration. Inhibition assay of peptides with beta-lactamase in vitro indicated that only P1 has the ability to inhibit beta-lactamase.  相似文献   

20.
TrbB, a periplasmic protein encoded by the conjugative plasmid F, has a predicted thioredoxin-like fold and possesses a C-X-X-C redox active site motif. TrbB may function in the conjugative process by serving as a disulfide bond isomerase, facilitating proper folding of a subset of F-plasmid-encoded proteins in the periplasm. Previous studies have demonstrated that a ΔtrbB F plasmid in Escherichia coli lacking DsbC(E.coli), its native disulfide bond isomerase, experiences a 10-fold decrease in mating efficiency but have not provided direct evidence for disulfide bond isomerase activity. Here we demonstrate that trbB can partially restore transfer of a variant of the distantly related R27 plasmid when both chromosomal and plasmid genes encoding disulfide bond isomerases have been disrupted. In addition, we show that TrbB displays both disulfide bond isomerase and reductase activities on substrates not involved in the conjugative process. Unlike canonical members of the disulfide bond isomerase family, secondary structure predictions suggest that TrbB lacks both an N-terminal dimerization domain and an α-helical domain found in other disulfide bond isomerases. Phylogenetic analyses support the conclusion that TrbB belongs to a unique family of plasmid-based disulfide isomerases. Interestingly, although TrbB diverges structurally from other disulfide bond isomerases, we show that like those isomerases, TrbB relies on DsbD from E. coli for maintenance of its C-X-X-C redox active site motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号