首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecto-5'-nucleotidase is regarded as being the key enzyme in the formation of the neuromodulator adenosine from released ATP. However, the association of ecto-5'-nucleotidase with nerve terminals is not consensual. Only enzyme histochemical and biochemical studies, but not immunocytochemical studies, agree on a general synaptic location of the enzyme. To clarify this issue further we tested the effect of an antibody against ecto-5'-nucleotidase, previously used in immunocytochemical studies, on the activity of ecto-5'-nucleotidase in fractions of nerve terminals isolated from different areas of rat hippocampus. The specific activity of extracellular AMP catabolism was higher in synaptosomes from the CA3 area (0.81+/-0.06 nmol/min/mg of protein) than from synaptosomes from the CA1 area or the dentate gyrus or from the whole hippocampus (0.49-0.68 nmol/ min/mg of protein). The catabolism of AMP (10 microM) was equally inhibited (85-92%) in synaptosomes from whole hippocampus, CA1, CA3, or dentate gyrus by alpha,beta-methylene-ADP (100 microM) and equally unaffected by p-nitrophenyl phosphate (0.5 mM) or rabbit IgGs (100 microg/ml). However, the antiserum against ecto-5'-nucleotidase (100 microg/ml) inhibited extracellular AMP catabolism by 44% in CA3 synaptosomes but had little or no effect in synaptosomes from CA1, dentate gyrus, or whole hippocampus. A similar difference in the inhibitory potential of the antibody was observed between fractions of isolated 5'-nucleotidase binding to concanavalin A-Sepharose (70%) and fractions not retained by the lectin column (18%). Taken together, these results suggest that immunological isoforms of ecto-5'-nucleotidase exist in the rat hippocampal nerve terminals, with predominance in the CA3 area.  相似文献   

2.
The purpose of this study was to determine whether the cholinergic system might have a regulatory role on vasoactive intestinal peptide (VIP) synthesis and release in the rat hippocampus and frontal cortex. Incubation of hippocampal or frontal cortical slices with the muscarinic agonist oxotremorine or antagonist atropine did not significantly alter VIP release. The nicotinic agonist methylcarbamylcholine (MCC) and the nicotinic antagonist dihydro-beta-erythroidine were also ineffective in altering VIP release. Chronic atropine (20 mg/kg, s.c., b.i.d., 10 days) and nicotine (0.59 mg/kg, s.c., b.i.d., 10 days) treatment significantly decreased the VIP content of the frontal cortex, by 42% and 26%, respectively. In contrast, neither treatment significantly altered the VIP content of the hippocampus. Both drug treatments decreased the amount of VIP released from tissue slices depolarized with veratridine in both cerebral cortex and hippocampus. Therefore, long-term treatment with atropine and nicotine results in changes in the synthesis and release of VIP in the cerebral cortex, whereas in the hippocampus the effect is limited to an alteration of VIP release. These results suggest that the acetylcholine regulates VIP neurotransmission in the rat frontal cortex and hippocampus by an action on muscarinic and nicotinic receptors.  相似文献   

3.
Abstract: The coexpression of sulphonylurea binding sites and ATP-sensitive K+ (KATP) channels was examined in the rat motor cortex, an area of the CNS exhibiting a high density of sulphonylurea binding. These channels were not detected on neuronal cell bodies, but sulphonylurea-sensitive KATP channels and charybdotoxin-sensitive, large-conductance calcium-activated K+ BKCa channels were detected by patch clamping of fused nerve terminals from the motor cortex. Subcellular fractionation revealed that high-affinity sulphonylurea binding sites were enriched in the nerve terminal fraction, whereas glibenclamide increased calcium-independent glutamate efflux from isolated nerve terminals. It is concluded that neuronal sulphonylurea receptors and KATP channels are functionally linked in the motor cortex and that they are both selectively expressed in nerve terminals, where the KATP channel may serve to limit glutamate release under conditions of metabolic stress.  相似文献   

4.
Lesion of the nucleus basalis in the basal forebrain of the rat results in the degeneration of the large cholinergic neurones which innervate the cortex. Parameters of cholinergic function, namely, acetylcholinesterase activity, muscarinic acetylcholine receptor number, and the depolarisation-induced release of acetylcholine, fall in ipsilateral cortex subsequent to lesion. These deficits are likely to reflect the loss of the presynaptic input to the cortex. A reversal in these deficits is seen 1 month after lesion, and a full recovery is seen after 150 days. This is thought to be due to a process of "spared axon sprouting" followed by the reestablishment of synapses. To examine the integrity of the cortical muscarinic receptor response following denervation, an assay of the polyphosphoinositide response was carried out. Cortical tissue slices, prelabelled with [3H]inositol, were incubated for 40 min with carbachol in the presence of Li+; the accumulation of [3H]inositol monophosphate ([3H]IP1) was used as an index of this response. A 92% increase in the carbachol-stimulated production of [3H]IP1 was seen 5 days after lesion compared to normal cortex. Sham-operated animals showed no change in [3H]IP1 accumulation at this time point. Dose-response experiments showed that this increase was due to an increase in the maximal response to carbachol after lesion with no change in EC50 values. Two weeks after lesion, this increased response was much attenuated; tissue slices from denervated cortex showing a strong acetylcholinesterase decrease (36-66%) showed an increase of just 30% above normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The potencies and intrinsic activities of adenosine analogs for stimulating cyclic AMP accumulation in slices of rat cerebral cortex were examined. 5'-N-Ethylcarboxamidoadenosine (NECA) caused the greatest increase in cyclic AMP accumulation (19.2-fold). 2-Chloroadenosine (2-CAD) induced a similar increase, but adenosine and six other analogs caused much smaller increases. All agonists tested had similar potencies in activating this response. Inhibition of adenosine uptake with 10 microM dipyridamole did not affect the maximal response to any agonist, although the potency of adenosine was increased approximately threefold. Each analog was also able to block partially the stimulation of cyclic AMP accumulation caused by NECA. Levels of cyclic AMP accumulation in the presence of NECA plus another analog were similar to those observed when the analog alone was present, as expected for partial agonists. Furthermore, the EC50 value for R-(-)-N6(2-phenylisopropyl)adenosine in increasing cyclic AMP accumulation was similar to the KI value for inhibiting the response to NECA. The EC50 value for adenosine was substantially higher than the KI value for inhibiting the response to NECA; however, in the presence of dipyridamole, the two values were more closely correlated. The response to NECA was blocked by 8-phenyltheophylline, 1,3-diethyl-8-phenylxanthine, and 8-p-sulfophenyltheophylline, with KI values from 1 to 10 microM. The results suggest that adenosine analogs stimulate cyclic AMP accumulation in cerebral cortex through low-affinity receptors, but that some analogs only partially activate these receptors. Adenosine itself may also be a partial agonist, or its actions may be obscured by simultaneous activation of another receptor.  相似文献   

6.
Abstract: The effects of lithium on muscarinic cholinoceptor-stimulated phosphoinositide turnover have been investigated in rat hippocampal, striatal, and cerebral cortical slices using [3H]inositol or [3H]cytidine prelabelling and inositol 1,4,5-trisphosphate [lns(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [lns(1,3,4,5)P4] mass determination methods. Carbachol addition resulted in maintained increases in lns(1,4,5)P3 and lns(1,3,4,5)P4 mass levels in hippocampus and cerebral cortex, whereas in striatal slices these responses declined significantly over a 30-min incubation period. Carbachol-stimulated lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations were inhibited by lithium in all brain regions studied in a time-and concentration-dependent manner. For example, in hippocampal slices significant inhibitory effects of LiCl were observed at times > 10 min after agonist challenge; IC50 values for inhibition of agonist-stimulated lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations by lithium were 0.22 ± 0.09 and 0.33 ± 0.13 mM, respectively. [3H]CMP-phosphatidate accumulation increased in all brain regions when slices were stimulated by agonist and lithium. The ability of myo-inositol to reverse these effects, as well as lithium-suppressed lns(1,4,5)P3 accumulation, implicates myo-inositol depletion in the action of lithium in the hippocampus and cortex at least. The results of this study suggest that although significant differences in the magnitude and time courses of changes in inositol (poly)phosphate metabolites occur in different brain regions, lithium evokes qualitatively similar enhancements of [3H]inositol monophosphate and [3H]CMP-phosphatidate levels and inhibitions of lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations. However, the inability of striatal slices to sustain carbachol-stimulated inositol polyphosphate accumulation in the absence of lithium and the inability to reverse effects with myo-inositol may indicate differences in phosphoinositide signalling in this brain region.  相似文献   

7.
Abstract: Previous research has shown that chronic ethanol consumption dramatically alters GABAA receptor α1 and α4 subunit gene expression in the cerebral cortex and GABAA receptor α1 and α6 subunit gene expression in the cerebellum. However, it is not yet known if chronic ethanol consumption produces similar alterations in GABAA receptor gene expression in other brain regions. One brain region of interest is the hippocampus because it has recently been shown that a subset of GABAA receptors in the hippocampus is responsive to pharmacologically relevant concentrations of ethanol. Therefore, we directly compared the effects of chronic ethanol consumption on GABAA receptor subunit gene expression in the hippocampus and cerebral cortex. Furthermore, we investigated whether the duration of ethanol consumption (14 or 40 days) would influence regulation of GABAA receptor gene expression in these two brain regions. Chronic ethanol consumption produced a significant increase in the level of GABAA receptor α4 subunit peptide in the hippocampus following 40 days but not 14 days. The relative expression of hippocampal GABAA receptor α1, α2, α3, α2/3, or γ2 was not altered by either period of chronic ethanol exposure. In marked contrast, chronic ethanol consumption for 40 days significantly increased the relative expression of cerebral cortical GABAA receptor α4 subunits and significantly decreased the relative expression of cerebral cortical GABAA receptor α1 subunits. This finding is consistent with previous results following 14 days of chronic ethanol consumption. Hence, chronic ethanol consumption alters GABAA receptor gene expression in the hippocampus but in a different manner from that in either the cerebral cortex or the cerebellum. Furthermore, these alterations are dependent on the duration of ethanol exposure.  相似文献   

8.
The endogenous level of cyclic AMP in incubated synaptosomes from cerebral cortex of guinea pigs was investigated after the addition of various agents to the incubation medium. It appeared that the synaptosomal suspension already contained exogenous adenosine. Preincubation with theophylline or with adenosine deaminase (ADase) decreased both the exogenous level of adenosine and the intrasynaptosomal level of cyclic AMP. The level of cyclic AMP was reincreased by the addition of adenosine agonists, especially 2-chloroadenosine. This increase was antagonized by deoxyadenosine and was not inhibited by dipyridamole. These results suggest that the adenosine derivatives in the synaptic cleft regulate the level of cyclic AMP in nerve terminals through adenosine receptor on the presynaptic membrane. ADP, ATP, dopamine, and histamine also stimulate the formation of cyclic AMP in the ADase-treated synaptosomes.  相似文献   

9.
Cyclic AMP accumulation in brain slices incubated with adenosine or the adenosine analogue 2-chloroadenosine was examined in different areas of rat cerebral cortex following a unilateral injection of FeCl2 solution into the sensorimotor cortex to induce chronic epileptic activity. In the epileptic cortex, cyclic AMP accumulation in cortical slices was elicited three- to 11-fold by adenosine. The elicitation by adenosine of cyclic AMP accumulation was markedly inhibited by the adenosine antagonist 8-phenyltheophylline. In anterior cortical areas of rats in which the appearance of electrographic isolated spikes was dominant either ipsilateral or contralateral to the injection site 8 days or more after the injection, the adenosine-elicited accumulation of cyclic AMP was greater on the side of dominant spike activity than on the other. In anterior cortical areas of rats showing nearly equal spike activity on the two sides 19 days or more after the injection, the cyclic AMP accumulation was greater on the side ipsilateral to the injection site than on the other. In anterior and posterior cortical areas of rats showing spike-and-wave complexes and isolated spikes 1 month or more after the injection, the cyclic AMP accumulation was greater on the ipsilateral side than on the other. Similar regional differences in the adenosine-elicited accumulation of cyclic AMP were detected in the presence of the adenosine uptake inhibitor dipyridamole or the phosphodiesterase inhibitor DL-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724). The cyclic AMP accumulation was elicited five- to 17-fold by 2-chloroadenosine, in which case the elicitation was markedly inhibited by 8-phenyltheophylline. Regional differences in the 2-chloroadenosine-elicited accumulation of cyclic AMP were similar to those with adenosine and were detected in the presence of Ro 20-1724 or adenosine deaminase. The regional differences which correlated with the electrographic discharge patterns were due mainly to persistent changes in cyclic AMP accumulation on the primary epileptic side. These results suggest that alterations in adenosine-sensitive cyclic AMP generation in the cortex are associated with the neurochemical process leading to chronic iron-induced epilepsy.  相似文献   

10.
Acetylcholine-rich synaptic vesicles were isolated from myenteric plexus-longitudinal muscle strips derived from the guinea pig ileum by the method of Dowe, Kilbinger, and Whittaker [J. Neurochem. 35, 993-1003 (1980)] using either unstimulated preparations or preparations field-stimulated at 1 Hz for 10 min using pulses of 1 ms duration and 10 V . cm-1 intensity. The organ bath contained either tetradeuterated (d4) choline (50 microM) or [3H]acetate (2 muCi . ml-1); d4 acetylcholine was measured by gas chromatography-mass spectrometry. As with Torpedo electromotor cholinergic vesicle preparations made under similar conditions the distribution of newly synthesized (d4 or [3H]) acetylcholine in the zonal gradient from stimulated preparations was not identical with that of endogenous (d0, [1H]) acetylcholine, but corresponded to a subpopulation of denser vesicles (equivalent to the VP2 fraction from Torpedo) that had preferentially taken up newly synthesized transmitter. The density difference between the reserve (VP1) and recycling (VP2) vesicles was less than that observed in Torpedo but this smaller difference can be accounted for theoretically by the difference in size between the vesicles of the two tissues. At rest, a lesser incorporation of labelled acetylcholine into the vesicle fraction was observed, and the peaks of endogenous and newly synthesized acetylcholine coincided. Stimulation in the absence of label followed by addition of label did not lead to incorporation of labelled acetylcholine, suggesting that the synthesis and storage of acetylcholine in this preparation and its recovery from stimulation is much more rapid than in Torpedo.  相似文献   

11.
On the Status of Lysolecithin in Rat Cerebral Cortex During Ischemia   总被引:1,自引:4,他引:1  
Abstract: Lysolecithin (lysoglycerophosphocholine, LPC) was isolated from rat cerebral cortex and quantitatively analyzed at various times after postdecapitative ischemic treatment. In addition, different procedures for extraction and analysis of the LPC in brain were evaluated. Results indicated that LPC can be quantitatively extracted into the organic phase using the conventional extraction procedure with chloroform-methanol (2:1, vol/ vol). However, care should be taken to avoid using strong acids, which can hydrolyze the alkenylether side chain of the plasmalogens, resulting in the release of 2-acyl-phospholipids. Quantitative GLC analysis using myris-toyl-LPC as internal standard revealed a level of 1.8 nmol LPC/mg protein in brain with acyl groups comprised mainly of 16:0, 18:0, and 18:1. The acyl group profile reflects that the LPC are derived mainly from phospho-lipase A2 action. An increase of 46% in the LPC level was observed at 1 min after ischemic treatment, but this was followed by a steady decline. Ischemia induced an increase in the LPC species that are enriched in 18:0 and 18:1 fatty acids. The transient appearance of LPC during ischemia further suggests that this phospholipid is undergoing active turnover, possibly hydrolysis by the lysophospholipase. This mechanism of action may account, at least in part, for the increase in both saturated and unsaturated fatty acids during the early phase of the ischemic treatment.  相似文献   

12.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

13.
Responsiveness of norepinephrine (NE)-sensitive cyclic AMP (cAMP)-generating systems was determined in slices from different areas of the rat cerebral cortex in which FeCl2 solution was injected unilaterally into the sensorimotor cortex to induce epileptic activity. In anterior cortical areas of rats in which the appearance of electrographic isolated spikes was dominant either ipsilaterally or contralaterally to the injection site 8-10 days after the injection, the cAMP accumulations elicited by NE and an NE-phentolamine combination were greater on the side of dominant spike activity than on the other. In anterior cortical areas of rats showing dominant spike activity on either side of the cortex 31-60 days after the injection, the cAMP accumulation elicited by NE was smaller on the dominant side than on the other. In anterior cortical areas of rats showing nearly equal spike activity on the two sides 31-60 days after the injection, the cAMP accumulations elicited by NE and an NE-phentolamine combination were greater on the side ipsilateral to the injection site than on the other. In anterior and posterior cortical areas of rats in which the appearance of spike and wave complexes, as well as isolated spikes, was detected 31-60 days after the injection, the cAMP accumulations elicited by NE and combinations of NE and phentolamine or propranolol were greater on the side ipsilateral to the injection site than on the other. The elicitation by an NE-propranolol combination, but not by an NE-phentolamine combination, of cAMP accumulation was almost completely inhibited by 8-phenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: [3H]Paroxetine binding to particulate membrane from tissue, obtained at autopsy, from the hippocampus, frontal cortex, and caudate nucleus from subjects who had or had not had schizophrenia was measured. The density of [3H]paroxetine binding to membranes from subjects who had or had not had schizophrenia did not differ. Similarly, the affinity of [3H]paroxetine binding in the frontal cortex and caudate nucleus was not different. By contrast, the affinity of [3H]paroxetine binding to hippocampal membrane from subjects who had schizophrenia was significantly lower than the affinity of binding for the nonschizophrenic subjects (0.40 ± 0.06 vs. 0.26 ± 0.02; p < 0.05). As [3H]paroxetine binds to the serotonin transporter, these data suggest that the serotonin transporter is altered in the hippocampus in subjects with schizophrenia.  相似文献   

15.
The presence and release of endogenous catecholamines in rat and guinea pig hippocampal nerve terminals was studied by fluorimetric HPLC analysis. In isolated nerve terminals (synaptosomes) the levels and breakdown of endogenous catecholamines were determined and the release process was characterized with respect to its kinetics and Ca2+ and ATP dependence. Endogenous noradrenaline and dopamine, but not adrenaline, were detected in isolated hippocampal nerve terminals. For dopamine both the levels and the amounts released were more than 100-fold lower than those for noradrenaline. In suspension, released endogenous catecholamines were rapidly broken down. This could effectively be blocked by monoamine oxidase inhibitors, Ca(2+)-free conditions, and glutathione. The release of both noradrenaline and dopamine was highly Ca2+ and ATP dependent. Marked differences were observed in the kinetics of release between the two catecholamines. Noradrenaline showed an initial burst of release within 10 s after K+ depolarization. The release of noradrenaline was terminated after approximately 3 min of K+ depolarization. In contrast, dopamine release was more gradual, without an initial burst and without clear termination of release within 5 min. It is concluded that both catecholamines are present in nerve terminals in the rat hippocampus and that their release from (isolated) nerve terminals is exocytotic. The characteristics of noradrenaline release show several similarities with those of other classical transmitters, whereas dopamine release characteristics resemble those of neuropeptide release in the hippocampus but not those of dopamine release in other brain areas. It is hypothesized that in the hippocampus dopamine is released from large, dense-cored vesicles, probably colocalized with neuropeptides.  相似文献   

16.
17.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

18.
Cunha  R. A. 《Neurochemical research》2001,26(8-9):979-991
Ecto-nucleotidases play a pivotal role in terminating the signalling via ATP and in producing adenosine, a neuromodulator in the nervous system. We have now investigated the pattern of adenosine formation with different concentrations of extracellular ATP in rat hippocampal nerve terminals. It was found that adenosine formation is delayed with increasing concentrations of ATP. Also, the rate of adenosine formation increased sharply when the extracellular concentrations of ATP + ADP decrease below 5 M, indicating that ATP/ADP feed-forwardly inhibit ecto-5-nucleotidase allowing a burst-like formation of adenosine possibly designed to activate facilitatory A2A receptors. Initial rate measurements of ecto-5-nucleotidase in hippocampal nerve terminals, using IMP as substrate, showed that ATP and ADP are competitive inhibitors (apparent Ki of 14 and 4 M). In contrast, in hippocampal immunopurified cholinergic nerve terminals, a burst-like formation of adenosine is not apparent, suggesting that channelling processes may overcome the feed-forward inhibition of ecto-5-nucleotidase, thus favouring A1 receptor activation.  相似文献   

19.
Abstract: The effect of Ginkgo biloba extract (EGb 761) treatment (100 mg/kg/day, per os, for 14 days) on electroconvulsive shock (ECS)-induced accumulation of free fatty acids (FFA) and diacylglycerols (DAG) was analyzed in rat cerebral cortex and hippocampus. EGb 761 reduced the FFA pool size by 33% and increased the DAG pool by 36% in the hippocampus. These endogenous lipids were unaffected in cerebral cortex. During the tonic seizure (10 s after ECS) the fast accumulation of FFA, mainly 20:4, was similar in sham- and EGb 761 -treated rats, in both the cerebral cortex and hippocampus. However, further accumulation of free 18:0 and 20:4, observed in the hippocampus of sham-treated rats during clonic seizures (30 s to 2 min after ECS), did not occur in EGb 761-treated animals. The rise in DAG content triggered in the cortex and hippocampus by ECS was delayed by EGb 761 treatment from 10 s to 1 min, when values similar to those in sham animals were attained. Moreover, in the hippocampus the size of the total DAG pool was decreased by 19% during the tonic seizure. At later times, DAG content showed a faster decrease in EGb 761-treated rats. By 2 min levels of all DAG acyl groups decreased to values significantly lower than in sham animals in both cortex and hippocampus. This study shows that EGb 761 treatment affects, with high selectivity, lipid metabolism and lipid-derived second messenger release and removal in the hippocampus, while affecting to a lesser extent the cerebral cortex.  相似文献   

20.
Nerve terminals prepared from rat cortex and hippocampus were loaded with seven radioactive putative neurotransmitters (serotonin, noradrenaline, dopamine, gamma-aminobutyric acid, aspartate, glutamate, and taurine). The release of these transmitters, choline acetyltransferase, 3,4-dihydroxyphenylalanine decarboxylase, enolase, and lactate dehydrogenase was monitored during complement-mediated lysis. Three antisera were used: anti-5'-nucleotidase, anti-Chol-1, and anti-rat cerebrum. Anti-5'-nucleotidase serum did not cause the release of any labelled transmitter or of any of the enzymes studied. Anti-Chol-1 serum released choline acetyltransferase and small amounts of enolase and lactate dehydrogenase. Anti-rat cerebrum caused the release of all seven transmitters, choline acetyltransferase, and small amounts of the other three enzymes. It was concluded that 5'-nucleotidase was not present on any of the terminals studied, and that Chol-1 is only present on cholinergic terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号