首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Human lungs contain secretory leukocyte protease inhibitor (SLPI), elafin and its biologically active precursor trappin-2 (pre-elafin). These important low-molecular weight inhibitors are involved in controlling the potentially deleterious proteolytic activities of neutrophil serine proteases including elastase, proteinase 3 and cathepsin G. We have shown previously that trappin-2, and to a lesser extent, elafin can be linked covalently to various extracellular matrix proteins by tissue transglutaminases and remain potent protease inhibitors. SLPI is composed of two distinct domains, each of which is about 40% identical to elafin, but it lacks consensus transglutaminase sequence(s), unlike trappin-2 and elafin. We investigated the actions of type 2 tissue transglutaminase and plasma transglutaminase activated factor XIII on SLPI. It was readily covalently bound to fibronectin or elastin by both transglutaminases but did not compete with trappin-2 cross-linking. Cross-linked SLPI still inhibited its target proteases, elastase and cathepsin G. We have also identified the transglutamination sites within SLPI, elafin and trappin-2 by mass spectrometry analysis of tryptic digests of inhibitors cross-linked to mono-dansyl cadaverin or to a fibronectin-derived glutamine-rich peptide. Most of the reactive lysine and glutamine residues in SLPI are located in its first N-terminal elafin-like domain, while in trappin-2, they are located in both the N-terminal cementoin domain and the elafin moiety. We have also demonstrated that the transglutamination substrate status of the cementoin domain of trappin-2 can be transferred from one protein to another, suggesting that it may provide transglutaminase-dependent attachment properties for engineered proteins. We have thus added to the corpus of knowledge on the biology of these potential therapeutic inhibitors of airway proteases.  相似文献   

2.
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.  相似文献   

3.
Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.  相似文献   

4.
Elafin and its precursor trappin-2 (also called pre-elafin) are potent protein inhibitors of neutrophil serine proteases such as leukocyte elastase and proteinase 3. Trappin-2 has unique conserved sequence motifs rich in Gln and Lys residues. These motifs are substrates for transglutaminases that may enable trappin-2 to be cross-linked to extracellular matrix proteins, thus anchoring the inhibitor at its site of action. We have used Western blotting and ELISA-based assays to demonstrate that both elafin and trappin-2 can be conjugated to various extracellular matrix proteins in vitro by a type 2 transglutaminase. Cross-linked elafin and trappin-2 still inhibited their target proteases. Surface plasmon resonance studies allowed the determination of the kinetic constants governing the interaction of fibronectin-bound elafin and trappin-2 with neutrophil elastase and proteinase 3. Both inhibitors were potent inhibitors when cross-linked to fibronectin by transglutamination, with equilibrium dissociation constants K(i) for their interaction with target proteases of 0.3 nM (elastase-elafin), 20 nM (proteinase 3-elafin), 0.3 nM (elastase-trappin-2), and 12 nM (proteinase 3-trappin-2). The conjugated inhibitors reacted more slowly with their target enzymes than did the soluble inhibitors, perhaps due to their immobilization, with association rate constants of 2-7 x 10(5) M(-)(1) s(-)(1) for elastase and 1-4 x 10(4) M(-)(1) s(-)(1) for proteinase 3. We believe this is the first demonstration that transglutaminase-mediated cross-linking of serine protease inhibitors to proteins preserves their inhibitory capacities.  相似文献   

5.
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.  相似文献   

6.
A tryptic protease with the characteristics of a mast cell tryptase was purified from dog mastocytoma cells propagated in nude mice. Partial amino acid sequence of the mastocytoma tryptase revealed unexpected differences in comparison with other mast cell and leukocyte granule protease sequences. Extraction from mastocytoma homogenates at high ionic strength, followed by gel filtration and benzamidine affinity chromatography yielded a product with several closely spaced bands (Mr 30,000-32,000) on gel electrophoresis and a single N-terminal sequence. Nondenaturing analytical gel filtration revealed an apparent Mr of 132,000, suggesting noncovalent association as a tetramer. Studies with peptide p-nitroanilides indicated pronounced substrate preferences, with P1 arginine preferred to lysine. Benzoyl-L-Lys-Gly-Arg-p-nitroanilide was the best of the substrates screened. Inhibition by diisopropyl fluorophosphate and tosyllysine chloromethyl ketone indicated that the enzyme is a serine protease. Like the tryptases of human mast cells, mastocytoma tryptic protease was inhibited by NaCl, resistant to inactivation by alpha 1-proteinase inhibitor and plasma, and stabilized by heparin. Comparison of the N-terminal 24 residues of mastocytoma tryptase revealed 80% identity with the more limited sequence reported for human lung tryptase, and surprisingly, closer homology to serine proteases of digestion and clotting than to other leukocyte granule proteases sequenced to date, including mast cell chymase. The N-terminal isoleucine is the homolog of trypsinogen Ile-16 which becomes the new N-terminus upon cleavage of the activation peptide. Thus, the tryptase N-terminus is related to the catalytic domain of activated serine proteases, and lacks the N-terminal regulatory domains found in most clotting and complement serine proteases. These findings provide further evidence that tryptases are unique serine proteases and that they may be less closely related in evolution and function than are other leukocyte granule proteases described to date.  相似文献   

7.
Mast cell tryptase is a secretory granule associated serine protease with trypsin-like specificity released extracellularly during mast cell degranulation. To determine the full primary structure of the catalytic domain and precursor forms of tryptase and to gain insight into its mode of activation, we cloned cDNAs coding for the complete amino acid sequence of dog mast cell tryptase and a second, possibly related, serine protease. Using RNA from dog mastocytoma cells, we constructed a cDNA library in lambda gt 10. Screening of the library with an oligonucleotide probe based on the N-terminal sequence of tryptase purified from the same cell source allowed us to isolate and sequence overlapping clones coding for dog mast cell tryptase. The tryptase sequence includes the essential residues of the catalytic triad and an aspartic acid at the base of the putative substrate binding pocket that confers P1 Arg and Lys specificity on tryptic serine proteases. The apparent N-terminal signal/activation peptide terminates in a glycine. A glycine in this position has not been observed previously in serine proteases and suggests a novel mode of activation. Additional screening of the library with a trypsinogen cDNA led to the isolation and sequencing of a full-length clone apparently coding for the complete sequence of a second tryptic serine protease (DMP) which is only 53.4% identical with the dog tryptase sequence but which contains an apparent signal/activation peptide also terminating in a glycine. Thus, the proteases encoded by these cloned cDNAs may share a common mode of activation from N-terminally extended precursors.  相似文献   

8.
Two of the major enzymes present in and released from rat mast cells are chymotrypsin-type serine protease (chymase) and trypsin-type serine protease (tryptase), and these have been postulated to be important in the inflammatory reactions. There have been no clear data regarding the trypsin-type protease in rat mast cells. Tryptase was recently purified from rat peritoneal mast cells with an associated protein (trypstatin) that inhibited the protease activity above pH 7.5. Chymase was also purified from rat peritoneal cells by employing a one-step method involving hydrophobic chromatography on octyl-Sepharose 4B or arginine-Sepharose 4B. The properties of chymase and tryptase were described in relation to substrate specificity and their relative sensitivity to inhibitors. It was found that proteolytic activities of these enzymes were modulated by naturally occurring substances, such as phosphoglycerides, long-chain fatty acids, and trypstatin. There is as yet little evidence for the physiological roles of these enzymes in the inflammatory reaction. It has been found that the specific, low-molecular-weight inhibitor of chymase, chymostatin, and that of tryptase, leupeptin, inhibit histamine release induced by addition of anti-rat IgE to mast cells. However, the inhibitors with molecular weights of more than 6000 were found to have no effect in this process. The data suggest that chymase and tryptase in mast cell granules play a crucial or significant role in the process of degranulation.  相似文献   

9.
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).  相似文献   

10.
Proteolytic activation of hemagglutinin, an envelope glycoprotein of the influenza virus, by host proteases is essential for infection and proliferation of the virus. However, there is no well-defined, inherent source of host proteases in man or swine, both of which are natural hosts for human influenza viruses. We have recently isolated a 32 kDa protein in a high salt extract from porcine lungs, which possess the hemagglutinin processing activity. In this study, we attempted to purify another hemagglutinin processing enzyme from porcine lung. The purified enzyme, named tryptase TC30, exhibited a molecular mass of about 30 kDa by SDS-PAGE and 28.5 kDa by gel filtration chromatography, suggesting that it is a monomer. Tryptase TC30 cleaved peptide substrates with Arg at the P1 position, and preferentially substrates with the Ser-Ile-Gin-Ser-Arg sequence corresponding to the HA cleavage site sequence of the A/PR/8/34 influenza virus. Among various inhibitors tested, trypsin-type serine protease inhibitors, such as aprotinin, antipain, benzamidine and leupeptin, efficiently inhibited the proteolytic activity of the enzyme. The N-terminal 40 amino acid sequence of tryptase TC30 exhibits more than 60% homology to mast cell tryptases from mice MCP-6 and human tryptase-alpha and -beta. These data indicate that tryptase TC30, the 30 kDa enzyme from porcine lung, is a novel hemagglutinin-cleaving enzyme.  相似文献   

11.
The susceptibility of connective tissue elements to degradation by human mast cells was explored using purified mast cell tryptase and sonicated mast cell preparations. The R-22 strain of smooth muscle cells from rat heart was used for preparation in vitro of a labelled anchored matrix. Digestion of 11.9 +/- 1.2% (n = 5) of this matrix was observed after overnight incubation with the mast cell sonicates. Pretreatment of the sonicate with a tryptase inhibitor TLCK reduced the digestion by 42%. Digestion of 12 +/- 1% (n = 4) of the matrix was observed with purified tryptase. The susceptible substrate within this anchored insoluble matrix resided in the glycoprotein compartment as defined by enzymatic characterization of the residual matrix. Mast cells may play a role in mediating connective tissue degradation through the release of proteases specifically synthesized by this cell.  相似文献   

12.
Tryptases are trypsin-like serine proteases whose expression is restricted to cells of hematopoietic origin, notably mast cells. gamma-Tryptase, a recently described member of the family also known as transmembrane tryptase (TMT), is a membrane-bound serine protease found in the secretory granules or on the surface of degranulated mast cells. The 321 amino acid protein contains an 18 amino acid propeptide linked to the catalytic domain (cd), followed by a single-span transmembrane domain. gamma-Tryptase is distinguished from other human mast cell tryptases by the presence of two unique cysteine residues, Cys(26) and Cys(145), that are predicted to form an intra-molecular disulfide bond linking the propeptide to the catalytic domain to form the mature, membrane-anchored two-chain enzyme. We expressed gamma-tryptase as either a soluble, single-chain enzyme with a C-terminal His tag (cd gamma-tryptase) or as a soluble pseudozymogen activated by enterokinase cleavage to form a two-chain protein with an N-terminal His tag (tc gamma-tryptase). Both recombinant proteins were expressed at high levels in Pichia pastoris and purified by affinity chromatography. The two forms of gamma-tryptase exhibit comparable kinetic parameters, indicating the propeptide does not contribute significantly to the substrate affinity or activity of the protease. Substrate and inhibitor library screening indicate that gamma-tryptase possesses a substrate preference and inhibitor profile distinct from that of beta-tryptase. Although the role of gamma-tryptase in mast cell function is unknown, our results suggest that it is likely to be distinct from that of beta-tryptase.  相似文献   

13.
Trappin-2 (SKALP/elafin), an elastase inhibitor, belongs to a unique family of proteinase inhibitors that are covalently anchored at the site of action through their transglutaminase substrate domain and are collectively called trappins. The transglutaminase substrate domain is therefore called "cementoin moiety". Currently, human, porcine, and bovine trappin-2 (SKALP/elafin) have been characterized. Previously, we showed that porcine trappin-2 (SKALP/elafin) occurs mainly in the trachea and large intestine. To determine the localization of trappin-2 (SKALP/elafin) at the cellular level, we carried out in situ hybridization and immunohistochemistry using the porcine trachea and large intestine and found that trappin-2 (SKALP/elafin) is produced in the goblet cells of the tracheal epithelium and of the large intestinal crypts. These locations suggest that trappin-2 (SKALP/elafin) is secreted onto the luminal surface of the trachea and crypts of Lieberkuhn and plays a protective role against destructive bacterial proteinases.  相似文献   

14.
Pre-elafin, also known as trappin-2, is an elastase-specific inhibitor that belongs to the trappin gene family. A chimeric gene encoding polyhistidine-tagged human pre-elafin fused to the yeast alpha-factor precursor was expressed in Saccharomyces cerevisiae. The chimera was engineered to keep a single copy of the mature alpha-factor peptide. This enabled the use of a simple bioassay (mating assay) to assess the relative efficiency of both the expression and the secretion of the recombinant molecule. We found that pre-elafin is processed both in vivo and in vitro by yapsin 1, the yeast aspartyl endoprotease encoded by YPS1. Cleavage by yapsin 1 occurred C-terminal to a subset of single lysine residues. Expression in a yapsin 1-deficient yeast strain was an indispensable condition to allow the efficient production of full-length human pre-elafin. The recombinant inhibitor was purified from concentrated culture medium by ammonium sulfate precipitation, affinity purification on a Ni(2+) resin, and cation exchange chromatography. Recombinant human pre-elafin was fully active and showed the same inhibitory profile toward different serine proteases to that reported for mature elafin.  相似文献   

15.
Helminthic cysteine proteases are well known to play critical roles in tissue invasion, nutrient uptake, and immune evasion of the parasites. In the same manner, the sparganum, the plerocercoid of Spirometra mansoni, is also known to secrete a large amount of cysteine proteases. However, cysteine protease inhibitors regulating the proteolytic activities of the cysteine protease are poorly illustrated. In this regard, we partially purified an endogenous cysteine protease inhibitor from spargana and characterized its biochemical properties. The cysteine protease inhibitor was purified by sequential chromatographies using Resource Q anion exchanger and Superdex 200 HR gel filtration from crude extracts of spargana. The molecular weight of the purified protein was estimated to be about 11 kD on SDS-PAGE. It was able to inhibit papain and 27 kDa cysteine protease of spargana with the ratio of 25.7% and 49.1%, respectively, while did not inhibit chymotrypsin. This finding suggests that the cysteine protease inhibitor of spargana may be involved in regulation of endogenous cysteine proteases of the parasite, rather than interact with cysteine proteases from their hosts.  相似文献   

16.
Previous studies with trans-4-(guanidinomethyl)cyclohexanecarboxylic acid 4-tert-butylphenyl ester (GMCHA-OPhBut), a trypsin inhibitor, strongly suggested the involvement of a trypsin-like protease in histamine release from mast cells induced by various secretagogues (Takei, M., Matumoto, T., Endo, K. & Muramatu, M. (1988) Agents and Actions, in press; Takei, M., Matumoto, T., Ito, T., Endo, K. & Muramatu, M.; Takei, M., Matumoto, T., Endo, K. & Muramatu, M. and Takei, M., Matumoto, T., Urashima, H., Endo, K. & Muramatu, M., unpublished results). Two serine proteases, chymase (Benditt, E.F. & Arase, M. (1959) J. Exp. Med. 110, 451-460) and tryptase Kido, H., Fukusen, N. & Katunuma, N. (1985) Arch. Biochem. Biophys. 239, 436-443) were demonstrated in rat peritoneal mast cells. Both enzymes were purified and the effects of inhibitors for trypsin and chymotrypsin on these proteases were examined. The trypsin-like protease was found in saline extract and purified by successive chromatographies on Sephadex G-100 and DEAE-cellulose columns. The molecular mass of this protease was apparently 120,000 Da. This protease showed maximal activity at pH 7.1 and was named pH 7 tryptase. Chymase was obtained from 1.5M NaCl extract. pH 7 Tryptase markedly hydrolysed Boc-Phe-Ser-Arg-NH-Mec and Boc-Val-Pro-Arg-NH-Mec among the various substrates containing arginyl and lysyl bonds but did not cleave Tos-Arg-OMe. Tos-Lys-CH2Cl and diisopropylfluorophosphate strongly inhibited this protease. Various inhibitors for trypsin inhibited pH 7 tryptase, and those for chymotrypsin inhibited chymase. Among the esters of GMCHA examined, GMCHA-OPhBut most strongly and competitively inhibited pH 7 tryptase but it had no effect on chymase.  相似文献   

17.
Trappin-2 (also known as pre-elafin) is an endogenous inhibitor of neutrophil serine proteases and is involved in the control of excess proteolysis, especially in inflammatory events, along with the structurally related secretory leucocyte proteinase inhibitor. Secretory leucocyte proteinase inhibitor has been shown to have antibacterial and antifungal properties, whereas recent data indicate that trappin-2 has antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In the present study, we tested the antibacterial properties of trappin-2 towards other respiratory pathogens. We found that trappin-2, at concentrations of 5-20 microm, has significant activity against Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Branhamella catarrhalis and the pathogenic fungi Aspergillus fumigatus and Candida albicans, in addition to P. aeruginosa and S. aureus. A similar antimicrobial activity was observed with trappin-2 A62D/M63L, a trappin-2 variant that has lost its antiprotease properties, indicating that trappin-2 exerts its antibacterial effects through mechanisms independent from its intrinsic antiprotease capacity. Furthermore, the antibacterial and antifungal activities of trappin-2 were sensitive to NaCl and heparin, demonstrating that its mechanism of action is most probably dependent on its cationic nature. This enables trappin-2 to interact with the membranes of target organisms and disrupt them, as shown by our scanning electron microscopy analyses. Thus, trappin-2 not only provides an antiprotease shield, but also may play an important role in the innate defense of the human lungs and mucosae against pathogenic microorganisms.  相似文献   

18.
Heparin antagonists are potent inhibitors of mast cell tryptase   总被引:7,自引:0,他引:7  
Tryptase may be a key mediator in mast cell-mediated inflammatory reactions. When mast cells are activated, they release large amounts of these tetrameric trypsin-like serine proteases. Tryptase is present in a macromolecular complex with heparin proteoglycan where the interaction with heparin is known to be essential for maintaining enzymatic activity. Recent investigations have shown that tryptase has potent proinflammatory activity, and inhibitors of tryptase have been shown to modulate allergic reactions in vivo. Many of the tryptase inhibitors investigated previously are directed against the active site. In the present study we have investigated an alternative approach for tryptase regulation. We show that the heparin antagonists Polybrene and protamine are potent inhibitors of both human lung tryptase and of recombinant mouse tryptase (mouse mast cell protease 6). Protamine inhibited tryptase in a competitive manner whereas Polybrene showed noncompetitive inhibition kinetics. Treatment of tetrameric, active tryptase with Polybrene caused dissociation into monomers, accompanied by complete loss of enzymatic activity. The present report thus suggests that heparin antagonists potentially may be used in treatment of mast cell-mediated diseases such as asthma.  相似文献   

19.
Serine proteases in mast cell granules, such as chymase, atypical chymase, and tryptase, which are major proteins in the granules, may play important roles in the process of immunoglobulin E (IgE)-mediated degranulation and in pathobiological alterations in tissues. Indeed, inhibitors of chymase, substrate analogs, and antichymase F(ab')2, but not inhibitors of tryptase, markedly inhibited histamine release induced by IgE-receptor bridging but not that induced by Ca ionophore. In contrast, inhibitors of metalloprotease inhibited histamine release induced not only by IgE-receptor bridging but also by Ca ionophore. These results suggest that chymase and metalloprotease are involved at different steps in the process of degranulation. The extents of inhibition of histamine release were closely correlated with the amounts of the inhibitors of chymase accumulated in the granules. After degranulation, the released proteases may in part contribute to pathobiological alterations in allergic disorders through generations of C3a anaphylatoxin and thrombin by human and rat tryptase, respectively, and those of angiotensin II and a chemotactic factor of neutrophils by human and rat chymase, respectively. Moreover, chymase and atypical chymase from rat were shown to destroy type IV collagen, and human tryptase was found to hydrolyze various plasma proteins, such as fibrinogen and high-molecular-weight kininogen. The biological activities of tryptase and chymase from rat may be regulated by their dissociation from and association with trypstatin, an endogenous inhibitor of these proteases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号