首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large‐scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species‐specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming.  相似文献   

2.
In this paper we test the influence of temperature and interference competition by dominant species on the foraging of subordinate species in Mediterranean ant communities. We have analyzed the changes in resource use by subordinate species in plots with different abundances of dominant ants, and in different periods of the day and the year, i.e., at different temperatures. The expected effects of competition by dominant species on foraging of subordinates were only detected for two species in the number of baits occupied per day, and for one species in the number of foragers at pitfall traps. In all three cases, subordinate species were less represented at baits or in traps in plots with a high density of dominants than in plots with a medium or low density of dominants. The number of workers per bait, and the foraging efficiency of subordinate species did not differ in plots differing in dominant abundance. Daily activity rhythms and curves of temperature versus foraging activity of subordinate species were also similar in plots with different abundance of dominant species, indicating no effect of dominants on the foraging times of subordinates. Instead, temperature had a considerable effect on the foraging of subordinate species. A significant relationship was found between maximum daily temperature and several variables related to foraging (the number of foragers at pitfall traps, the number of baits occupied per day, and the number of workers per bait) of a number subordinate species, both in summer and autumn. These results suggest that the foraging of subordinate ant species in open Mediterranean habitats is influenced more by temperature than by competition of dominants, although an effect of dominants on subordinates has been shown in a few cases. In ant communities living in these severe and variable environments, thermal tolerance reduces the importance of competition, and the mutual exclusion usually found between dominant and subordinate species appears to be the result of physiological specialization to different temperature ranges. Received: 8 May 1998 / Accepted: 30 July 1998  相似文献   

3.
Patterns of species occurrence and abundance are influenced by abiotic factors and biotic interactions, but these factors are difficult to disentangle without experimental manipulations. In this study, we used observational and experimental approaches to investigate the role of temperature and interspecific competition in controlling the structure of ground‐foraging ant communities in forests of the Siskiyou Mountains of southwestern Oregon. To assess the potential role of competition, we first used null model analyses to ask whether species partition temporal and/or spatial environments. To understand how thermal tolerances influence the structure of communities, we conducted a laboratory experiment to estimate the maximum thermal tolerance of workers and a field experiment in which we added shaded microhabitats and monitored the response of foragers. Finally, to evaluate the roles of temperature and interspecific competition in the field, we simultaneously manipulated shading and the presence of a dominant competitor (Formica moki). The foraging activity of species broadly overlapped during the diurnal range of temperatures. Species co‐occurrence patterns varied across the diurnal temperature range: species were spatially segregated at bait stations at low temperatures, but co‐occurred randomly at high temperatures. The decreased abundance of the co‐occurring thermophilic Temnothorax nevadensis in shaded plots was a direct effect of shading and not an indirect effect of competitive interactions. Thermal tolerance predicted the response of ant species to the shading experiment: species with the lowest tolerances to high temperatures showed the greatest increase in abundance in the shaded plots. Moreover, species with more similar thermal tolerance values segregated more frequently on baits than did species that differed in their thermal tolerances. Collectively, our results suggest that thermal tolerances of ants may mediate competitive effects in habitats that experience strong diurnal temperature fluctuations.  相似文献   

4.
For the Argentine ant Linepithema humile, bioclimatic models often predict narrower optimal temperature ranges than those suggested by behavioural and physiological studies. Although water balance characteristics of workers of this species have been thoroughly studied, gaps exist in current understanding of its thermal limits. We investigated critical thermal minima and maxima and upper and lower lethal limits following acclimation to four temperatures (15, 20, 25, 30 degrees C; 12L:12D photoperiod) in adult workers of the Argentine ant, L. humile, collected from Stellenbosch, South Africa. At an ecologically relevant rate of temperature change of 0.05 degrees Cmin(-1), CTMax varied between 38 and 40 degrees C, and CTMin varied between 0 and 0.8 degrees C. In both cases the response to acclimation was weak. A significant time by exposure temperature interaction was found for upper and lower lethal limits, with a more pronounced effect of acclimation at longer exposure durations. Upper lethal limits varied between 37 and 44 degrees C, whilst lower lethal limits varied between -4 and -10.5 degrees C, with an acclimation effect more pronounced for upper than lower lethal limits. A thermal envelope for workers of the Argentine ant is provided, demonstrating that upper thermal limits do likely contribute to distributional limits, but that lower lethal limits and limits to activity likely do not, or at least for workers who are not exposed simultaneously to the demands of load carriage and successful foraging behaviour.  相似文献   

5.
Small cursorial ectotherms risk overheating when foraging in the tropical forest canopy, where the surfaces of unshaded tree branches commonly exceed 50 °C. We quantified the heating and subsequent cooling rates of 11 common canopy ant species from Panama and tested the hypothesis that ant workers stop foraging at temperatures consistent with the prevention of overheating. We created hot experimental “sunflecks” on existing foraging trails of four ant species from different clades and spanning a broad range of body size, heating rate, and critical thermal maxima (CTmax). Different ant species exhibited very different heating rates in the lab, and these differences did not follow trends predicted by body size alone. Experiments with ant models showed that heating rates are strongly affected by color in addition to body size. Foraging workers of all species showed strong responses to heating and consistently abandoned focal sites between 36 and 44 °C. Atta colombica and Azteca trigona workers resumed foraging shortly after heat was removed, but Cephalotes atratus and Dolichoderus bispinosus workers continued to avoid the heated patch even after >5 min of cooling. Large foraging ants (C. atratus) responded slowly to developing thermal extremes, whereas small ants (A. trigona) evacuated sunflecks relatively quickly, and at lower estimated body temperatures than when revisiting previously heated patches. The results of this study provide the first field-based insight into how foraging ants respond behaviorally to the heterogeneous thermal landscape of the tropical forest canopy.  相似文献   

6.
Animals principally forage to try to maximize energy intake per unit of feeding time, developing different foraging strategies. Temperature effects on foraging have been observed in diverse ant species; these effects are limited to the duration of foraging or the number of foragers involved. The harvester ant Messor barbarus L. 1767 has a specialized foraging strategy that consists in the formation of worker trails. Because of the high permeability of their body integument, we presume that the length, shape, and type of foraging trails of M. barbarus must be affected by temperature conditions. From mid-June to mid-August 1999, we tested the effect on these trail characteristics in a Mediterranean forest. We found that thermal stress force ants to use a foraging pattern based on the variation of the workers trail structure. Ants exploit earlier well-known sources using long physical trails, but as temperatures increases throughout the morning, foragers reduce the length of the foraging column gradually, looking for alternative food sources in nonphysical trails. This study shows that animal forage can be highly adaptable and versatile in environments with high daily variations.  相似文献   

7.
Local adaptation and range restrictions in alpine environments are central topics in biogeographic research with important implications for predicting impacts of global climate change on organisms. Temperature is strongly coupled to elevation and greatly affects life history traits of oviparous reptiles in mountain environments. Thus, species may encounter barriers for expanding their ranges if they are unable to adapt to the changing thermal conditions encountered along elevational gradients. We sought to determine whether thermal requirements for embryonic development provide a plausible explanation for elevational range limits of two species of lacertid lizards that have complementary elevational ranges in a Mediterranean mountain range (Psammodromus algirus is found at elevations below 1600 m and Iberolacerta cyreni is found at elevations above 1600 m). We combined experimental incubation of eggs in the laboratory with modelled estimates of nest temperature in the field. In both species, increasing temperature accelerated development and produced earlier hatching dates. The species associated with warmer environments (P. algirus) experienced an excessive hatching delay under the lowest incubation temperature. Moreover, newborns from eggs incubated at low temperatures showed poor body condition and very slow rates of postnatal growth. In contrast, eggs of the strictly alpine species I. cyreni exhibited shorter incubation periods than P. algirus that allowed hatching before the end of the active season even under low incubation temperatures. This was countered by lower reproductive success at higher temperatures, due to lower hatching rates and higher incidence of abnormal phenotypes. Elevational range limits of both species coincided well with threshold temperatures for deleterious effects on embryonic development. We suggest that incubation temperature is a major ecophysiological factor determining the elevational range limits of these oviparous lizards with predictable consequences for mountain distributions under future warmer climates.  相似文献   

8.
1. The thermal adaptation hypothesis proposes that because thermoregulation involves a high metabolic cost, thermal limits of organisms must be locally adapted to temperatures experienced in their environments. There is evidence that tolerance to high temperatures decreases in insects inhabiting colder habitats and microclimates. However, it is not clear if thermal limits of ectotherms with contrasting temporal regimes, such as diurnal and nocturnal insects, are also adapted to temperatures associated with their circadian activities. 2. This study explores differences in heat tolerance among diurnal and nocturnal ant species in four ecosystems in Mexico: tropical montane, tropical rainforest, subtropical dry forests, and high‐elevation semi‐desert. 3. The critical thermal maximum (CTmax), i.e. the temperature at which ants lost motor control, was estimated for diurnal and nocturnal species. CTmax for 19 diurnal and 12 nocturnal ant species distributed among 45 populations was also estimated. 4. Semi‐desert and subtropical dry forest ants displayed higher tolerances to high temperatures than did ants in tropical rainforest. The lowest tolerance to high temperatures was recorded in tropical montane forest ants. In general, among all habitats, the CTmax of nocturnal ants was lower than that of diurnal ants. 5. An increase in nocturnal temperatures, combined with lower tolerance to high temperatures, may represent a substantial challenge for nocturnal ectotherms in a warming world.  相似文献   

9.
 The activity of the thermophilous ant Proformica longiseta has been studied in a Mediterranean high-mountain environment. An analysis has been made of the biotic and abiotic variables involved, the location of and conditions surrounding the activity, as well as the strategies used by the ant to remain active at high temperatures. The results of this study indicate that the maximum activity occurs during the middle hours of the day and that the variable which most influences daily activity is temperature, especially at the soil surface. With respect to the biotic variables, the availability of food and the demand for food by the larvae strongly correlate with activity. The time outside the nest is usually spent in vegetation searching for food. This activity continues even when the temperature of the soil surface exceeds 58°C. To tolerate these temperatures, the ant not only has a high resistance to heat (critical thermal maximum = 51.1°C), but also increases the speed of its movements and resorts to thermal refuges. The present work contributes data on the biology of this highly thermophilous species, which is also capable of tolerating a long, hard winter and then developing within a short vegetative period. Received: 1 August 1997 / Accepted: 27 October 1997  相似文献   

10.
Abstract.  1. The density (rate of encountering foraging raids) and species richness of army ants (Formicidae: Ecitoninae, and behaviourally convergent Ponerinae) was measured in montane tropical forest. Above-ground and subterranean army ant raids were sampled using standard protocols at four sites across an elevational gradient (1200–1650 m above mean sea level) in and near cloud forest in the area of Monteverde, Costa Rica.
2. Mean ambient temperature differed among sites, and decreased with elevation. For the above-ground foraging army ant species, raid rates also declined with elevation. Surface army ant raid rates, however, were not affected by day to day weather variation within sites (temperature, cloud cover, or precipitation).
3. For the underground foraging army ant species, raid rates did not vary directionally with elevation, and subterranean raid rates were not affected by day to day weather variation within sites.
4. Army ant species richness was not directionally related to elevation, and species sharing among sites was generally high.
5. Army ant community structure changes with elevation in Neotropical montane forest, and the results suggest that the strongest effects are of temperature regimes on the density of raids. These findings provide a baseline against which to detect changes in army ant communities that may accompany directional climate change in tropical cloud forests.  相似文献   

11.
Abstract. 1. Tiger beetles ( Cicindela ) of open habitats have served as model ectotherms in studies of the dependence of activity and habitat utilization on temperature. Potential departures from the cicindelid model were investigated in Cicindela sexguttata , a species inhabiting forests where thermal resources are patchy and ephemeral.
2. Body temperatures (Tb) were determined by inserting thermocouples into beetles immediately after observing specific behaviours in the field. Cicindela sexguttata elevated Tb by basking, foraged at a preferred Tb of 32.8 °C, and stilted, sun-faced, or sought shade when Tb exceeded 35 °C. Although these behaviours were typical of Cicindela , their set points were lower than those of species in more open habitats.
3. Illuminated substrates were utilized for basking and foraging. Beetles were dispersed throughout the forest floor in early spring, but became aggregated in light gaps when the canopy leafed out. Operative temperatures of thermal models indicated that beetles were unable to maintain the preferred Tb in shade and would not be able to maintain a preferred Tb in light gaps during the autumn, when adults are normally in diapause.
4. Beetles were confined to foraging in light gaps once the canopy was closed. Foraging rate and searching speed were independent of Tb, in contrast to other cicindelids. Adults rarely searched for prey, but ambushed small arthropods that alighted in the light gap. Dependence on patches of illumination as thermal resources may increase prey capture, intraspecific encounters, and risk of predation, and preclude foraging in the autumn when Cicindela species of open habitats are also active.  相似文献   

12.
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3 °C; CTmax = 46.1 °C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6–57°C (equating to a body temperature of 24.5–43.1 °C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed.  相似文献   

13.
1. Ecological trade‐offs in ant (Hymenoptera: Formicidae) assemblages and their implications for coexistence boast a rich history in entomology. Yet investigations of trade‐offs have largely been limited to homogeneous environments. We examined how environmental context modifies trade‐off expression in an ant assemblage spanning a heterogeneous region in central Florida, U.S.A. 2. We examined how trade‐off expression is altered among two contrasting habitat types: open shrub and forest. We tested for the presence of the dominance‐discovery trade‐off and two dominance‐thermal tolerance trade‐offs by estimating behavioral dominance, discovery ability, and thermal tolerance (foraging thermal limit, lethal temperature, and maximal abundance temperature) for a wide range of interacting ant species. 3. We found significantly linear dominance hierarchies in both shrub and forest habitats, showing dominant species out‐compete subordinates for food resources. In thermally stressful shrub habitats, subordinates exhibit higher thermal tolerances, take greater thermal risks, and reach maximum forager abundances at higher temperatures than do dominant species. This suggests temperature mediated trade‐offs control coexistence in shrub habitat. In thermally moderate forest habitat, we found limited evidence for trade‐offs between competitive dominance and resource discovery or between dominance and thermal traits, implying other processes control coexistence. These results demonstrate that trade‐offs controlling ant coexistence may be contingent on environmental context.  相似文献   

14.
Variation in thermal performance within and between populations provides the potential for adaptive responses to increasing temperatures associated with climate change. Organisms experiencing temperatures above their optimum on a thermal performance curve exhibit rapid declines in function and these supraoptimal temperatures can be a critical physiological component of range limits. The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is one of the best‐documented biological invasions and factors driving its spatial spread are of significant ecological and economic interest. The present study examines gypsy moth sourced from different latitudes across its North American range for sensitivity to high temperature in constant temperature growth chamber experiments. Supraoptimal temperatures result in higher mortality in northern populations compared with populations from the southern range extent (West Virginia and coastal plain of Virginia, U.S.A.). Sublethal effects of high temperature on traits associated with fitness, such as smaller pupal mass, are apparent in northern and West Virginia populations. Overall, the results indicate that populations near the southern limits of the range are less sensitive to high temperatures than northern populations from the established range. However, southern populations are lower performing overall, based on pupal mass and development time, relative to northern populations. This suggests that there may be a trade‐off associated with decreased heat sensitivity in gypsy moth. Understanding how species adapt to thermal limits and possible fitness trade‐offs of heat tolerance represents an important step toward predicting climatically driven changes in species ranges, which is a particularly critical consideration in conservation and invasion ecology.  相似文献   

15.
Abstract.  1. Analyses of ecological trade-offs help to explain how organisms balance competing demands. Harvester ants ( Pogonomyrmex occidentalis ), are conspicuous residents of shortgrass prairie in western North America; worker P. occidentalis actively clear all vegetation from the immediate vicinity of their large gravel mounds. This study is based on the prediction that vegetation clearing yields a thermal trade-off by increasing soil temperatures; during cool periods the resulting increase in soil temperature opens new time windows for activity, while during hot periods the soil temperature is more likely to exceed the maximum thermal tolerance for this species. To test the hypothesis that daily and seasonal trade-offs in ant activity result from vegetation removal, the effects of experimentally applied shade on activity patterns were measured.
2. Harvester ant activity correlated highly with ground temperature; experimental shading of ant mounds shifted daily activity patterns by lowering ground temperature. Shading in the morning significantly delayed the onset of ant activity by preventing solar warming of the mound. In contrast, mid-day experimental shading prevented elevation of ground temperatures to above 50 °C and allowed ants to remain active when lethally high temperatures would normally force them inside the mound.
3. A model derived from field data predicted surface ground temperature (and therefore ant activity) based on air temperature and solar radiation, under conditions of sun and shade. For each of six seasons modelled, shade removal yielded a net gain of activity time. These results indicate that vegetation removal by harvester ants produces an advantageous thermoregulatory effect by helping to maximise activity time.  相似文献   

16.
Abstract. 1. Many ant species abandon foraging and retreat underground when parasitoids in the dipteran family Phoridae are present. Although the influence of phorids on ant foraging is well documented, their influence on interspecific competition is less studied. This study examined whether phorids influenced the competitive ability of host ants in the genus Linepithema at two sites in Brazil.
2. The phorid Pseudacteon lontrae attacked Linepithema piliferum at one site, while the phorid Pseudacteon pusillus attacked an unknown Linepithema ( Linepithema sp.) at the other site. Phorid parasitoids of Linepithema were far more common than phorids of other ant species.
3. Despite a high abundance of phorids, it was difficult to conclude that they influenced competition. Captures in pitfall traps indicated that host Linepithema were most active during times of day when phorids were inactive.
4. Camponotus rufipes and Brachymyrmex sp., the most common competitors of Linepithema sp. (60% of all interactions), dominated Linepithema sp. during the day regardless of phorids. Remaining ant species could not be evaluated individually because they interacted with Linepithema sp. infrequently.
5. Ectatomma brunneum was the most common competitor of L. piliferum (58% of all interactions). The high abundance of phorids at this site made it impossible to evaluate interactions between E. brunneum and L. piliferum in the absence of phorids.
6. Phorids seldom influenced exploitative competition by causing host Linepithema to abandon the bait when no ant competitors were present.  相似文献   

17.
Abstract .1. Field studies were made of the benefits and costs of two feeding strategies in the genus Maculinea, whose final-instar larvae parasitise Myrmica ant colonies. Maculinea arion is an obligate predator of ant brood, whereas M. rebeli and M. alcon mimic ant larvae and are fed (like cuckoos) directly by the workers.
2. Samples of > 1500 Myrmica nests confirmed laboratory-based predictions that, by feeding at a lower trophic level, many (4.7-fold) more individuals of M. rebeli and M. alcon are supported per ant colony than M. arion.
3. Because of their efficient feeding, cuckoo species often occupied sites where their phytophagous early larval populations coincided to only a small extent (> 10%) with host Myrmica colonies, whereas all sites supporting M. arion had 50–100% of the phytophagous stages within foraging range of the host Myrmica species.
4. Greater host-specificity was identified as another consequence of cuckoo-feeding. The ecological cost of this is discussed .
5. The feeding of other Maculinea species had not been fully described: the data suggest that M. nausithous is a predator of ant brood and confirm that M. teleius is predacious .  相似文献   

18.
In the thermophilic ant genus Cataglyphis, species differing in their physical caste system have developed alternative mechanisms to face extreme heat by physiological and/or behavioural adaptations. In this study, we tested whether thermal tolerance is related to worker size in the ant Cataglyphis cursor that presents intermediate worker size compared with previously studied species (size range 3.5–10 mm). Thermal tolerance at two temperatures was tested in the laboratory on colonies originating from two habitats (seaside versus vineyard), known to differ in average worker size. As expected large workers were more resistant to high temperature than small workers, but the effect of worker size on thermal resistance was less pronounced under the more extreme temperatures. The pattern of thermal tolerance was similar in the two habitat types. After controlling for worker size, worker thermal tolerance significantly varied amongst colonies, but this variation was not related to colony size. Our results suggest that a higher thermal tolerance can confer an advantage to larger workers especially during foraging and are discussed in the context of the evolution of worker size in ants.  相似文献   

19.
Abstract.  1. The organisation of an ant assemblage inhabiting an olive orchard in central Italy was analysed and patterns of dominance among ant species were described in order to assess (i) the relationship between thermal dependency and degree of behavioural dominance, and (ii) the relationship between dominance and discovery ability.
2. Activity patterns of the most abundant species on trees were examined in a sample of 120 trees during spring and summer. The degree of behavioural dominance and the ability of different species to discover new food sources were assessed using tuna baiting on a subset of 80 trees.
3. Different ant species showed contrasting patterns of activity. Some species (such as Lasius lasioides , Camponotus lateralis , and Camponotus piceus ) were most active during the warmer part of the day, while others restricted their activity to the cooler hours ( Camponotus aethiops and Plagiolepis pygmaea ). Some species (such as Crematogaster scutellaris ) were active irrespective of the time of day.
4. No clear relationship was observed between temperature of maximal activity and degree of behavioural dominance. There was, however, a positive relationship between behavioural dominance and thermal range of activity. A positive relationship between dominance and ability to find resources, with the most behaviourally dominant and aggressive species being most efficient in finding food items, was also observed.
5. The results support the idea that the temperature–dominance relationship is much more complex in Mediterranean-type habitats than in other ecosystems. Of particular interest is the positive dominance–discovery relationship. This finding contrasts with previous investigations, which reported a negative relationship between dominance and discovery ability and suggested that this pattern plays a role in promoting the coexistence of species in ant communities.  相似文献   

20.
Xim Cerdá  Javier Retana 《Oikos》2000,89(1):155-163
Cataglyphis is a fairly homogeneous ant genus which is widespread over the arid regions of the Old World. All Cataglyphis species are thermal specialists which are adapted to extreme environments where they forage at nearly lethal temperatures. This study focusses on two Cataglyphis species which differ considerably in their physical caste systems. These species have developed two alternative mechanisms facing extreme heat. In C. velox , foraging at high surface temperatures is clearly dependent on size: large C. velox workers forage at midday and are able to withstand higher temperatures than small workers. On the other hand, C. rosenhaueri has not developed great physical specialization, but the workers of this species have achieved physiological (such as low cuticular transpiration and metabolic rate), and behavioural adaptations (such as raising their abdomen to protect the vital organs contained in it from high temperatures) to tolerate thermal stress. The result is that small C. rosenhaueri workers may withstand extreme heat conditions in a similar way to large C. velox workers, and much better than small C. velox workers. The different mechanisms used by these two species to withstand extreme heat could reflect fundamental patterns of independent evolution. In some situations, selection may act to promote a relatively narrow size range of adult workers, all of them able to withstand thermal extremes, while in others it may act by producing different worker sizes with different tolerance to environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号