首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The dauer larva of the nematode Caenorhabditis elegans is a good model system for investigating the regulation of developmental fates by environmental cues. Here we show that SDF-9, a protein tyrosine phosphatase-like molecule, is involved in the regulation of dauer larva formation. The dauer larva of sdf-9 mutants is different from a normal dauer larva but resembles the dauer-like larva of daf-9 and daf-12 dauer-constitutive mutants. Like these mutants, the dauer-constitutive phenotypes of sdf-9 mutants were greatly enhanced by cholesterol deprivation. Epistasis analyses, together with the relationship between sdf-9 mutations and daf-9 expression, suggested that SDF-9 increases the activity of DAF-9 or helps the execution of the DAF-9 function. SDF-9 was expressed in two head cells in which DAF-9 is expressed. By their position and by genetic mosaic experiments, we identified these cells as XXXL/R cells, which are known as embryonic hypodermal cells and whose function at later stages is unknown. Killing of the sdf-9-expressing cells in the wild-type first-stage larva induced formation of the dauer-like larva. Since this study on SDF-9 and former studies on DAF-9 showed that the functions of these proteins are related to those of steroids, XXXL/R cells seem to play a key role in the metabolism or function of a steroid hormone(s) that acts in dauer regulation.  相似文献   

9.
Mutants of Caenorhabditis elegans that form dauer-like larvae   总被引:7,自引:0,他引:7  
The development, ultrastructure, and genetics of two mutants that form dauer-like larvae have been characterized. Dauer larva morphogenesis is initiated regardless of environmental stimuli, and it is incomplete or abnormal. The resistance to detergent characteristic of normal dauer larvae is not fully achieved, and the mutants are unable to exit from the dauer-like state of developmental arrest. Mutant life span is not extended beyond the three weeks characteristic of the nondauer life cycle, whereas normal dauer larvae can live for several months. Growth of daf-15(m81)IV, the less dauer-like of the two, is nearly arrested at the second (dauer-specific) molt, but feeding is not completely suppressed. Head shape, cuticle, and intestinal ultrastructure are nondauer, whereas sensory structures (amphid and deirid) and excretory gland morphology are intermediate between that of dauer and nondauer stages. The daf-9(e1406)X mutant is dauer-like in head shape, cuticle, and deirid ultrastructure, intermediate in amphid and inner labial neuron morphology, and nondauer or abnormal in the intestine. Also, the daf-9 mutant exhibits abnormalities in the pharyngeal arcade cell processes and pharyngeal g1 gland. Double mutants carrying both daf-9 and daf-15 are more resistant to detergent than either single mutant. Like the single mutants, they cannot complete morphogenesis, and they are unable to exit from the dauer-like stage. Both daf-9 and daf-15 mutations are epistatic to previously described dauer-defective mutations, indicating that these two genes act late in the pathway leading to the dauer larva. The genetic tests and the mutant ultrastructure suggest that the two genes may affect parallel pathways of morphogenesis.  相似文献   

10.
11.
12.
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.  相似文献   

13.
14.
15.
The daf-4 gene encodes a type II bone morphogenetic protein receptor in Caenorhabditis elegans that regulates dauer larva formation, body size and male tail patterning. The putative type I receptor partner for DAF-4 in regulating dauer larva formation is DAF-1. Genetic tests of the mechanism of activation of these receptors show that DAF-1 can signal in the absence of DAF-4 kinase activity. A daf-1 mutation enhances dauer formation in a daf-4 null background, whereas overexpression of daf-1 partially rescues a daf-4 mutant. DAF-1 alone cannot fully compensate for the loss of DAF-4 activity, indicating that nondauer development normally results from the activities of both receptors. DAF-1 signaling in the absence of a type II kinase is unique in the type I receptor family. The activity may be an evolutionary remnant, owing to daf-1's origin near the type I/type II divergence, or it may be an innovation that evolved in nematodes. daf-1 and daf-4 promoters both mediated expression of green fluorescent protein in the nervous system, indicating that a DAF-1/DAF-4 receptor complex may activate a neuronal signaling pathway. Signaling from a strong DAF-1/DAF-4 receptor complex or a weaker DAF-1 receptor alone may provide larvae with more precise control of the dauer/nondauer decision in a range of environmental conditions.  相似文献   

16.
17.
In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.  相似文献   

18.
19.
20.
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号