首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The WHO ‘Global Strategy for Dengue Prevention and Control, 2012–2020’ addresses the growing need for the treatment of dengue, and targets a 25% reduction in morbidity and 50% in mortality (using 2010 estimates as baseline). Achieving these goals requires future dengue prevention strategies that will employ both potential vaccines and sustainable vector-control measures. Maternally transferred dengue antibody is an important factor in determining the optimal age for dengue vaccination.

Objectives

To estimate the seroprevalence of dengue antibodies among mothers living in an area of high endemicity – Ban Pong, Ratchaburi Province – and to assess maternal dengue antibodies transferred to cord blood.

Materials & Methods

A cross-sectional study was conducted with 141 pregnant women who delivered at Ban Pong Hospital, Ratchaburi, Thailand. Maternal-cord paired sera were tested for dengue neutralizing (NT) antibody by PRNT50 assay. A ratio of ≥ 1:10 NT titer to dengue serotype was considered seropositive.

Results

Most mothers (137/141, 97.2%) had NT antibodies to at least one dengue serotype in their sera. At birth, the proportion of cord sera with NT antibodies to DEN-1, DEN-2, DEN-3, and DEN-4, were high and similar to the sera of their mothers, at 93.6%, 97.2%, 97.9%, and 92.2%, respectively. The dengue geometric mean titers (GMT) in cord blood were significantly higher than the maternal antibodies (p<0.001): highest in DEN-2, followed by DEN-3, and then DEN-1. The GMT of DEN-4 was the lowest among all four serotypes.

Conclusions

Dengue infection is highly prevalent among pregnant women in this dengue-endemic area. Most of the cord blood had transferred dengue antibodies, which may have an impact on the disease burden in this population.  相似文献   

2.
The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.  相似文献   

3.
The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.  相似文献   

4.
The type-specific antibody responses in rabbits immunized with both types of herpes simplex virus (HSV), measured by complement-requiring neutralizing (CRN) and slow-reacting CRN (s-CRN) antibody assays were compared. Titers of type-specific antibody measured by s-CRN antibody assay were always markedly higher than those measured by CRN antibody assay. The s-CRN antibody assay was so sensitive that even an undetectable level of CRN antibody could be readily detected by this method. The detection of type-specific antibody by s-CRN antibody assay may be useful when attempting to analyze human HSV infection.  相似文献   

5.
Simian immunodeficiency virus (SIV) infection of natural-host species, such as sooty mangabeys (SMs), is characterized by a high level of viral replication and a low level of generalized immune activation, despite evidence of an adaptive immune response. Here the ability of SIV-infected SMs to mount neutralizing antibodies (Nab) against autologous virus was compared to that of human immunodeficiency virus type 1 (HIV-1) subtype C-infected subjects. While high levels of Nab were observed in HIV-1 infection, samples obtained at comparable time points from SM exhibited relatively low titers of autologous Nab. Nevertheless, SM plasma with higher Nab titers also contained elevated peripheral CD4+ T-cell levels, suggesting a potential immunologic benefit for SMs. These data indicate that AIDS resistance in these primates is not due to high Nab titers and raise the possibility that low levels of Nab might be an inherent feature of natural-host SIV infections.More than 40 species of African nonhuman primates (NHPs) naturally harbor CD4+-tropic lentiviruses that are collectively known as simian immunodeficiency viruses (SIVs) and represent the ancestors of the human pathogens human immunodeficiency virus type 1 (HIV-1) and HIV-2. Interestingly, African NHPs infected with their cognate SIV generally do not progress to AIDS, despite high levels of sustained virus replication, with the only known exception being chimpanzee SIV (SIVcpz)-infected chimpanzees (16). Among the natural hosts for SIV infection, the sooty mangabey ([SM] Cercocebus atys) is of particular interest, because cross-species transmission of SM SIV (SIVsm) from this natural host into humans initiated the HIV-2 epidemic in West Africa (17). In addition, SIVsm (herein referred to as SIV) is the ancestor of the rhesus macaque SIV (SIVmac) viruses that are used in disease pathogenesis and vaccination studies in the rhesus macaque model (17). Both naturally infected and experimentally inoculated SMs remain healthy, maintain CD4+ T cells, and do not progress to AIDS-like disease, despite sustained high levels of virus replication (31).Nonpathogenic infection of SMs is characterized by low levels of immune activation during the chronic phase of infection, which are reached after a transient immune activation that occurs during primary infection (reviewed in reference 31). These findings have led to the hypothesis that the absence of generalized immune activation in SIV-infected SMs during the chronic phase of infection is an important feature that favors the preservation of CD4+ T-cell homeostasis, thereby avoiding disease progression (31). However, most of these earlier studies focused on T cells and innate immune cells, with a significant gap existing in our understanding of whether humoral immunity might also differ between pathogenic and nonpathogenic infections. In HIV-1-infected patients, B cells produce neutralizing antibodies against the infecting (autologous) virus, which drives viral escape, continuous de novo antibody production (26-28, 32), and B-cell dysfunction (24). The striking differences in both the clinical outcomes of infection and the levels of immune activation between SIV-infected SMs and HIV-1-infected humans prompted us to compare the neutralizing antibody (Nab) response against the autologous virus in these two populations. To this end, we utilized a pseudovirus assay that has been used extensively by our group and others to evaluate Nab against HIV-1 and SIV envelope (Env) glycoproteins (15, 19, 22, 26, 28, 32, 33; also unpublished data). All SMs were housed at the Yerkes National Primate Research Center (Atlanta, GA) and maintained in accordance with National Institutes of Health guidelines. The Emory University Animal Care and Use Committee approved these studies. Details of the Zambia Emory HIV Research Project (ZEHRP) have been described elsewhere (2, 10, 21). The Emory University Institutional Review Board and the University of Zambia School of Medicine Research Ethics Committee approved informed-consent and human subject protocols. None of the subjects received antiretroviral therapy during the evaluation period.In HIV-1 infection, autologous Nabs develop to relatively high titers against the newly transmitted virus within the first few months (15, 19, 26-28, 32). Here we sought to test whether a similar increase in Nab titer occurs during nonpathogenic SIV infection of SMs. Samples were obtained from five animals that were inoculated intravenously with plasma from a naturally infected SM as part of a previous study (30). Multiple, biologically functional Envs were cloned from plasma collected at day 14 postinoculation (Table (Table1),1), and Nab activity was evaluated in plasma collected at 6 months postinoculation. To facilitate comparison with early HIV-1 infection, Nab activity in plasma was also evaluated between 2 and 9 months against Envs that were cloned between 31 and 88 estimated days after infection from four subtype C HIV-1-infected seroconverters in Zambia (Table (Table1).1). Figure Figure1A1A demonstrates that Nab activity in plasma diluted 1:100 was readily detectable in all HIV-1-infected subjects at levels approaching 100% neutralization. However, Nab activity in the SM plasma was significantly lower than in the human subjects (median, 10% versus 93%, respectively; P = 0.02). Binding antibody was detected in all five SMs at titers greater than 1:51,200 by enzyme-linked immunosorbent assay (ELISA), demonstrating that all monkeys had seroconverted by 6 months and maintained high titers of binding antibody throughout the evaluation period (Fig. (Fig.1B).1B). Thus, the low level of Nab was not due to a diminished humoral immune response.Open in a separate windowFIG. 1.Autologous Nab activity and B-cell proliferation during experimental infection of SMs. (A) Neutralization activity levels in plasma from five SMs (filled black circles), which were experimentally inoculated with plasma from a naturally SIV-infected SM, and four HIV-1-infected Zambian subjects (half-filled squares), who were recently infected through heterosexual contact, are shown. The horizontal bars represent the median for each group. To assess neutralizing activity, pseudoviruses were created by expressing each cloned Env with an HIV-1 env-deficient backbone (ΔSG3). JC53-BL (Tzm-bl) cells were infected with each pseudovirus in the presence or absence of serially diluted autologous plasma. Each point represents the average level of neutralization at a 1:100 dilution of plasma for at least two Env clones (see Table Table11 for number of Envs tested). Each neutralization assay was performed twice independently, using duplicate wells. Statistical significance between the groups was determined by a Mann-Whitney test, using GraphPad Prism 5. Longitudinal measurements of endpoint antibody ELISA titers in plasma (filled green circles) (23) (B), autologous neutralization activity in plasma (filled blue diamonds) (C), percentages of Ki-67+ CD20+ cells in blood (filled black triangles) (D), and percentages of CD20+ cells in blood (filled red squares) (E) are shown for the five experimentally inoculated SMs combined. In panel C, each point represents average neutralization at a 1:100 dilution of plasma over time for at least two day 14 Env clones from each SM. For panels D and E, PBMCs were gated by forward and side scatter, and the CD3 CD20+ population was assessed for Ki-67 staining (D) by flow cytometry. SP34-2 was used to stain CD3, L27 was used for CD20, and B56 was used for Ki-67 (all from BD Biosciences). Error bars represent the standard errors of the means (SEMs). Plasma viral load peaked at day 14 (data not shown). Filled symbols in panels A through E indicate data generated from experimentally infected SMs.

TABLE 1.

Autologous Nab activity in experimentally SIV-infected SM and acutely HIV-1-infected humans
Subject IDaVirusNo. of mo postinfection Nab activity was evaluatedNo. of days postinfection Envs were cloned from plasmaNo. of Envs tested% neutralization at a 1:100 dilution of plasma
FuvSIVsm-Fuo614416.3
FSsSIVsm-Fuo614310.6
FWvSIVsm-Fuo614510.5
FFsSIVsm-Fuo614210.3
FRsSIVsm-Fuo61439.3
185FHIV-1533494.6
153MHIV-1988594.3
221MHIV-1631691.5
205FHIV-1248587.1
Open in a separate windowaID, identification.The low level of Nab activity observed in the five experimentally inoculated SMs persisted for 16 months and did not exceed 50% at a 1:100 dilution of plasma at any time point tested (Fig. (Fig.1C).1C). In contrast, the high levels of Nab activity in the HIV-1-infected subjects persisted for over 2 years, often exceeding 50% inhibitory titers of 1:3,000 against the early virus, as is characteristic of early subtype C HIV-1 infection (15, 19, 26, 28). Figure Figure1D1D demonstrates that a transient increase in proliferating B cells, as measured by positive Ki-67 staining (12), occurred in the SMs and peaked around day 30 postinfection and then declined to a level just above baseline by day 60. Analysis using a Wilcoxon signed-rank test for paired samples showed that the percentages of Ki-67-positive (Ki-67+) B cells were higher at days 21 and 30 than at day −5, reaching borderline significance at both time points (P = 0.06). In contrast, the percentages of Ki-67+ B cells on days 60 and 475 were not significantly different from that on day −5 (P = 0.8 and 0.3, respectively). An early but transient decrease in the percentage of circulating CD20+ B cells was also observed during the initial 20 days of infection (Fig. (Fig.1E).1E). Thus, the B-cell compartment within the SM underwent changes consistent with immune activation followed by resolution. Based on these results, it does not appear that a global defect in the B-cell response in the SM can account for the low-level Nab response elicited.To investigate Nab responses during established infection, we extended this analysis to a panel of 11 naturally SIV-infected SMs in the Yerkes colony and 5 chronically HIV-1-infected subjects in Zambia. Envs were cloned from these monkeys and human subjects using peripheral blood mononuclear cell (PBMC) DNA or plasma samples, and sensitivity to Nab was evaluated. Because Nab activity against contemporaneous Env is often low or undetectable in HIV-1 infection (1, 5, 14, 25, 27, 28, 32), we evaluated plasma collected between 6 and 55 months after the Envs were cloned from each individual. Table Table22 shows that the SM Envs reflected the four SIV subtypes that circulate in the Yerkes colony (3). Figure Figure2A2A demonstrates that Nab activity in the chronically HIV-1-infected subjects was high (median, 91%), whereas in the naturally SIV-infected SMs it was again significantly lower (median, 14%; P = 0.003). Nevertheless, Nab activity in the naturally infected SMs exhibited a considerable range, from undetectable to 84% neutralization (Fig. (Fig.2A).2A). This observation prompted us to investigate whether parameters associated with disease progression in HIV-1 infection were correlated with the level of Nab activity. Figure Figure2B2B demonstrates that the number of CD4+ T cells was positively correlated with the potency of neutralization (r = 0.69; P = 0.02), while the plasma viral load showed a trend toward an inverse correlation with neutralization (Fig. (Fig.2C)2C) (r = −0.54; P = 0.08). A correlation between plasma viral load and autologous Nab titer in established HIV-1 infection has not been observed (9).Open in a separate windowFIG. 2.Autologous Nab activity and its correlation with CD4+ count and plasma viral load during established natural infection of SMs. (A) Neutralization activity levels in plasma from 11 naturally SIV-infected SMs in the Yerkes colony (open circles) and 5 chronically HIV-1-infected human subjects from Zambia (half-filled squares) are shown. Statistical significance between groups was determined by a Mann-Whitney test using GraphPad Prism 5. Correlation between Nab activity and CD3+ CD4+ T cell counts or plasma viral load in naturally infected SMs (open circles) is shown in panels (B) and (C), respectively. The percent neutralization at a 1:100 dilution of plasma (shown in panel A) is plotted along the x axis. Each CD4+ T cell count and viral load value represents the average of three measurements from samples collected from the 11 SMs approximately 1 year apart. The significance of each correlation was determined using a nonparametric Spearman test. Open circles indicate data from naturally infected SMs.

TABLE 2.

Autologous Nab activity in naturally SIV-infected SMs and HIV-1-infected humans with established infections
Subject IDaVirusEnv subtypeNo. of mo between plasma collection and Env cloningNo. of Envs tested% neutralization at 1:100 dilution of plasma
FWkSIVsm228584.4
FNnSIVsm131463.5
FFvSIVsm150459.7
FFmSIVsm130442.0
FNgSIVsm548428.0
FBnSIVsm349213.9
FDoSIVsm36512.0
FZoSIVsm12838.8
FOhSIVsm1624.7
FPnSIVsm13250.6
FFjSIVsm15420.0
109MHIV-1C6591.4
55MHIV-1C15891.3
135FHIV-1C16497.4
106MHIV-1C17579.4
153FHIV-1C55599.0
Open in a separate windowaID, identification.This study is the first to directly compare the Nab response against the autologous virus in nonpathogenic SIV versus HIV-1 infection, including evaluation of both the early, developing Nab response in acute infection and the mature response in chronic infection. A significant difference in the magnitude of Nab activity was apparent during both early and later time points, with relatively strong but ultimately ineffective neutralization activity developing and persisting into chronic infection in humans but not in SMs. Although the SIV and HIV-1 samples were obtained during similar stages of infection, the disparity in the magnitude of autologous Nab activity during early infection could in part reflect differences such as the route of infection (intravenous versus mucosal) or the complexity of the founder virus (a single variant in HIV-1 versus multiple variants in SIV). In addition, the production of SIV Env pseudoviruses in human 293T cells could have altered the glycosylation pattern or the proteins that are embedded within the virion, decreasing the neutralization susceptibility of the SIV Env pseudoviruses. However, production of a subset of these pseudoviruses in an African green monkey-derived cell line (COS-1) did not alter their Nab sensitivity (data not shown).Despite the lack of potent autologous Nab, both naturally and experimentally SIV-infected SMs produce antibodies that bind Env in ELISAs or Western blotting (4, 6, 13, 18, 23). It is possible that the SIV Env glycoproteins elicit a different profile of Nab than does HIV-1 Env. The potential for structural and biological differences between SIV and HIV-1 Envs has not been thoroughly investigated, although they would not be unexpected due to the low level of amino acid sequence conservation between them. SIVsm/HIV-2 lineage-derived Envs (i.e., the SIVmac series) show a “wide evolutionary distance” and lack of cross-reactivity with SIVcpz/HIV-1-derived Envs, with an overall sequence identity in gp120 of ∼25% across HIV-1, HIV-2, and SIVsm (7, 8). Clear biological differences in immunogenicity have been described for HIV-1 group M subtypes, which all derive from a common SIV ancestor (reviewed in reference 20). Furthermore, SM IgG antibody molecules have less flexibility in the hinge region than human IgG, which could lead to a failure of the SM antibodies to recognize recessed neutralization targets such as the receptor binding domains (29). Thus, HIV-1 Env could elicit neutralizing antibodies that are qualitatively different from those induced by SIV Env.Early resolution of immune activation could be a key feature that distinguishes nonpathogenic from pathogenic infection (12, 31). The data presented here are consistent with that hypothesis, in that signs of early B-cell proliferation were present in the experimentally infected SMs but were resolved and did not result in potent neutralizing activity. However, later in infection, the naturally infected SMs did develop low-to-moderate levels of Nab activity, and these levels were positively correlated with the number of peripheral CD4+ T cells. This finding suggests that synergy between CD4+ T cells and B cells is maintained in this nonpathogenic setting. Other biologic factors could contribute to this correlation; however, differences in age and viral subtype in this cohort of SMs could not explain this finding (data not shown).Taken together, these results indicate that a low level of autologous Nab activity is a novel and previously unappreciated feature of nonpathogenic SIV infection of SMs. The fact that high-titer Nabs are not necessary to avoid disease progression during SIV infection of SMs is consistent with the notion that the apathogenicity of natural SIV infections is not the result of particularly effective adaptive immune responses against the virus (11). It is possible that this low level of autologous Nab activity in SMs stems in part from antibody recognition of targets that are poorly exposed on the native SIV Env glycoproteins. A low level of neutralizing activity in SM may therefore have a protective effect because it does not drive viral escape or induce chronic immune activation in the B-cell compartment. Moreover, a low level of immune activation in B cells and/or preservation of CD4+ T cells could enhance the quality of the neutralizing antibody response. It will be important, in future work, to assess how this low level of autologous Nab activity in SIV-infected SMs meshes with the lower levels of immune activation and dysregulation observed in these animals. Understanding the qualitative and quantitative differences in the Nab response during pathogenic versus nonpathogenic infection could provide critical information regarding protection from AIDS.  相似文献   

6.
Diseases caused by dengue virus (DV) infection vary in severity, with symptoms ranging from mild fever to life threatening dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). Clinical studies have shown that significant decrease in the level of lipoproteins is correlated with severe illness in DHF/DSS patients. Available evidence also indicates that lipoproteins including high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are able to facilitate cell entry of HCV or other flaviviruses via corresponding lipoprotein receptors. In this study, we found that pre-incubation of DV with human serum leads to an enhanced DV infectivity in various types of cells. Such enhancement could be due to interactions between serum components and DV particles. Through co-immunoprecipitation we revealed that apolipoprotein A-I (ApoA-I), the major protein component in HDL, is associated with DV particles and is able to promote DV infection. Based on that observation, we further found that siRNA knockdown of the scavenger receptor class B type I (SR-BI), the cell receptor of ApoA-I, abolished the activity of ApoA-I in enhancement of DV infection. This suggests that ApoA-I bridges DV particles and cell receptor SR-BI and facilitates entry of DV into cells. FACS analysis of cell surface dengue antigen after virus absorption further confirmed that ApoA-I enhances DV infection via promoting initial attachment of the virus to cells. These findings illustrate a novel entry route of DV into cells, which may provide insights into the functional importance of lipoproteins in dengue pathogenesis.  相似文献   

7.

Background

Chikungunya virus (CHIKV) is a globally re-emerging arbovirus for which previous studies have indicated the majority of infections result in symptomatic febrile illness. We sought to characterize the proportion of subclinical and symptomatic CHIKV infections in a prospective cohort study in a country with known CHIKV circulation.

Methods/Findings

A prospective longitudinal cohort of subjects ≥6 months old underwent community-based active surveillance for acute febrile illness in Cebu City, Philippines from 2012-13. Subjects with fever history were clinically evaluated at acute, 2, 5, and 8 day visits, and at a 3-week convalescent visit. Blood was collected at the acute and 3-week convalescent visits. Symptomatic CHIKV infections were identified by positive CHIKV PCR in acute blood samples and/or CHIKV IgM/IgG ELISA seroconversion in paired acute/convalescent samples. Enrollment and 12-month blood samples underwent plaque reduction neutralization test (PRNT) using CHIKV attenuated strain 181/clone25. Subclinical CHIKV infections were identified by ≥8-fold rise from a baseline enrollment PRNT titer <10 without symptomatic infection detected during the intervening surveillance period. Selected CHIKV PCR-positive samples underwent viral isolation and envelope protein-1 gene sequencing. Of 853 subjects who completed all study procedures at 12 months, 19 symptomatic infections (2.19 per 100 person-years) and 87 subclinical infections (10.03 per 100 person-years) occurred. The ratio of subclinical-to-symptomatic infections was 4.6:1 varying with age from 2:1 in 6 month-5 year olds to 12:1 in those >50 years old. Baseline CHIKV PRNT titer ≥10 was associated with 100% (95%CI: 46.1, 100.0) protection from symptomatic CHIKV infection. Phylogenetic analysis demonstrated Asian genotype closely related to strains from Asia and the Caribbean.

Conclusions

Subclinical infections accounted for a majority of total CHIKV infections. A positive baseline CHIKV PRNT titer was associated with protection from symptomatic CHIKV infection. These findings have implications for assessing disease burden, understanding virus transmission, and supporting vaccine development.  相似文献   

8.
9.
10.
11.
12.
13.
丙型肝炎病毒(HCV)感染在全球范围内流行,如何能够有效控制和阻断HCV的感染和传播成为研究热点。HCV借助其极高的变异率逃避机体的免疫监视,并通过多种机制得以侵入、繁殖,引发一系列病理改变。因此,在感染初期激发机体有效的体液免疫反应,产生强烈而又广泛的中和作用,对阻断入侵和感染至关重要。我们对HCV中和抗体的研究进展予以简要综述。  相似文献   

14.
15.
16.
17.
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 × 106 to 10 × 106 viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.Despite years of intense research, a truly protective AIDS vaccine is far away. Suboptimal immunogenicity, inadequate antigen presentation, and inappropriate immune system activation are believed to have contributed to these disappointing results. However, several lines of evidence suggest that the control or prevention of infection is possible. For example, despite repeated exposures, some individuals escape infection or delay disease progression after being infected (1, 14, 15). Furthermore, passively infused neutralizing antibodies (NA) (28, 42, 51) or endogenously expressed NA derivatives (29) have been shown to provide protection against intravenous simian immunodeficiency virus challenge. On the other hand, data from several vaccine experiments suggest that cellular immunity is an important factor for protection (6, 32). Therefore, while immune protection against human immunodeficiency virus (HIV) and other lentiviruses appears feasible, the strategies for eliciting it remain elusive.Because of its crucial role in viral replication and infectivity, the HIV envelope (Env) is an attractive immunogen and has been included in nearly all vaccine formulations tested so far (28, 30, 31). Env surface (SU) and transmembrane glycoproteins (gp) are actively targeted by the immune system (9, 10, 47), and Env-specific antibodies and cytotoxic T lymphocytes (CTLs) are produced early in infection. The appearance of these effectors also coincides with the decline of viremia during the acute phase of infection (30, 32). Individuals who control HIV infection in the absence of antiretroviral therapy have Env-specific NA and CTL responses that are effective against a wide spectrum of viral strains (14, 23, 35, 52, 60). At least some of the potentially protective epitopes in Env appear to interact with the cellular receptors during viral entry and are therefore highly conserved among isolates (31, 33, 39, 63). However, these epitopes have complex secondary and tertiary structures and are only transiently exposed by the structural changes that occur during the interaction between Env and its receptors (10, 11, 28). As a consequence, these epitopes are usually concealed from the immune system, and this may explain, at least in part, why Env-based vaccines have failed to show protective efficacy. Indeed, data from previous studies suggested that protection may be most effectively triggered by nascent viral proteins (22, 28, 30, 48, 62).We have conducted a proof-of-concept study to evaluate whether presenting Env to the immune system in a manner as close as possible to what occurs in the context of a natural infection may confer some protective advantage. The study was carried out with feline immunodeficiency virus (FIV), a lentivirus similar to HIV that establishes persistent infections and causes an AIDS-like disease in domestic cats. As far as it is understood, FIV evades immune surveillance through mechanisms similar to those exploited by HIV, and attempts to develop an effective FIV vaccine have met with difficulties similar to those encountered with AIDS vaccines (25, 37, 66). In particular, attempts to use FIV Env as a protective immunogen have repeatedly failed (13, 38, 58). Here we report the result of one experiment in which specific-pathogen-free (SPF) cats primed with a DNA immunogen encoding FIV Env and feline granulocyte-macrophage colony-stimulating factor (GM-CSF) and boosted with viable, autologous T lymphocytes ex vivo that were transduced to express Env and feline interleukin 15 (IL-15) showed a remarkable level of protection against challenge with ex vivo FIV. Consistent with recent findings indicating the importance of NA in controlling lentiviral infections (1, 59, 63), among the immunological parameters investigated, only the titers of NA correlated inversely with protection. Collectively, the findings support the notion that Env is a valuable vaccine immunogen but needs to be administered in a way that permits the expression of its full protective potential.  相似文献   

18.
19.
Several studies have demonstrated that the passive transfer of protective antigen (PA)-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29). Guinea pigs were fully protected against infection by 40LD50 B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD50 of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号