首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysregulation of non-coding RNAs (ncRNAs) has been proved to play pivotal roles in epithelial-mesenchymal transition (EMT) and fibrosis. We have previously demonstrated the crucial function of long non-coding RNA (lncRNA) ATB in silica-induced pulmonary fibrosis-related EMT progression. However, the underlying molecular mechanism has not been fully elucidated. Here, we verified miR-29b-2-5p and miR-34c-3p as two vital downstream targets of lncRNA-ATB. As opposed to lncRNA-ATB, a significant reduction of both miR-29b-2-5p and miR-34c-3p was observed in lung epithelial cells treated with TGF-β1 and a murine silicosis model. Overexpression miR-29b-2-5p or miR-34c-3p inhibited EMT process and abrogated the pro-fibrotic effects of lncRNA-ATB in vitro. Further, the ectopic expression of miR-29b-2-5p and miR-34c-3p with chemotherapy attenuated silica-induced pulmonary fibrosis in vivo. Mechanistically, TGF-β1-induced lncRNA-ATB accelerated EMT as a sponge of miR-29b-2-5p and miR-34c-3p and shared miRNA response elements with MEKK2 and NOTCH2, thus relieving these two molecules from miRNA-mediated translational repression. Interestingly, the co-transfection of miR-29b-2-5p and miR-34c-3p showed a synergistic suppression effect on EMT in vitro. Furthermore, the co-expression of these two miRNAs by using adeno-associated virus (AAV) better alleviated silica-induced fibrogenesis than single miRNA. Approaches aiming at lncRNA-ATB and its downstream effectors may represent new effective therapeutic strategies in pulmonary fibrosis.  相似文献   

2.
Urinary miRNAs are discussed as potential biomarkers for bladder cancer. The majority of miRNAs, however, are downregulated, making it difficult to utilize reduced miRNA signals as reliable diagnostic tools. Because the downregulation of miRNAs is frequently associated with hypermethylation of the respective regulative sequences, we studied whether DNA hypermethylation might serve as an improved diagnostic tool compared to measuring downregulated miRNAs. miRNA expression arrays and individual qPCR were used to identify and confirm miRNAs that were downregulated in malignant urothelial cells (RT4, 5637 and J82) when compared to primary, non-malignant urothelial cells (HUEPC). DNA methylation was determined by customized PCR-arrays subsequent to methylation-sensitive DNA-restriction and by mass spectrometry. miRNA expression and DNA methylation were determined in untreated cells and in cultures treated with the demethylating agent 5-Aza-2′-deoxycytidine. miR-200b, miR-152 and miR-10a displayed differential expression and methylation among untreated cancer cell lines. In addition, reduced miRNA expression of miR-200b, miR-152, and miR-10a was associated with increased DNA methylation in malignant cells versus HUEPC. Finally, the demethylation approach revealed a causal relationship between both parameters for miR-152 in 5637 and also suggests a causal connection of both parameters for miR-200b in J82 and miR-10a in 5637. In conclusion, our studies in multiple bladder cancer cell lines and primary non-malignant urothelial cells suggest that hypermethylation of miR-152, miR-10a and miR-200b regulative DNA sequences might serve as epigenetic bladder cancer biomarkers.  相似文献   

3.
MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.  相似文献   

4.
Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls. Eleven miRNAs were deregulated: 9 displayed higher levels compared to controls (miR-34a-5p, miR-34b-3p, miR-34c-5p, miR-146b-5p, miR-208a, miR-221-3p and miR-381), while 4 were decreased (miR-125b-5p, miR-193a-3p, miR-193b-3p and miR-378a-3p). To explore the relevance of DM2 miRNA deregulation, the predicted interactions between miRNA and mRNA were investigated. Global gene expression was analyzed in DM2 and controls and bioinformatic analysis identified more than 1,000 miRNA/mRNA interactions. Pathway and function analysis highlighted the involvement of the miRNA-deregulated mRNAs in multiple aspects of DM2 pathophysiology. In conclusion, the observed miRNA dysregulations may contribute to DM2 pathogenetic mechanisms.  相似文献   

5.
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.  相似文献   

6.
7.
MicroRNA-199a (miRNA-199a) has been shown to have comprehensive functions and behave differently in different systems and diseases. It is encoded by two loci in the human genome, miR-199a-1 in chromosome 19 and miR-199a-2 in chromosome 1. Both loci give rise to the same miRNAs (miR-199a-5p and miR-199a-3p). The cause of the diverse action of the miRNA in different systems is not clear. However, it is likely due to different regulation of the two genomic loci and variable targets of the miRNA in different cells and tissues. Here we studied promoter methylation of miR-199a in testicular germ cell tumors (TGCTs) and glioblastomas (gliomas) and discovered that hypermethylation in TGCTs of both miR-199a-1 and -2 resulted in its reduced expression, while hypomethylation of miR-199a-2 but not -1 in gliomas may be related to its elevated expression. We also identified a common regulator, REST, which preferentially bound to the methylated promoters of both miR-199a-1 and miR-199a-2. The action of miR-199a is dependent on its downstream targets. We identified MAFB as a putative target of miRNA-199a-5p in TGCTs and confirmed that the tumor suppression activity of the microRNA is mediated by its target MAFB. By studying the mechanisms that control the expressions of miR-199a and its various downstream targets, we hope to use miR-199a as a model to understand the complexity of miRNA biology.  相似文献   

8.
9.
Numbers of emerging evidence suggest that variable microRNA (miRNA) expression facilitates the aging process. In this study, we distinguished aberrant miRNA expression in aged skin and explored the biological functions and potential mechanism of upregulated miR-302b-3p. At first, miRNA microarray analysis was examined to explore miRNA expression profiling in the skin of aging mice model by D -galactose (d -gal) injection. We identified 29 aberrant miRNAs in aged mice skin. Next, KEGG enrichment analysis was conducted with DIANA-miPath v3.0, which was revealed that enrichment pathways involved in such processes as extracellular matrix-receptor interaction, MAPK signaling pathway, and mammalian target of rapamycin (mTOR) signaling pathway. The target genes of deregulated miRNAs were predicted from four bioinformatic algorithms (miRDB, Targetscan, miRwalk, and Tarbase). The interaction network of miRNAs and their targets were visualized using Cytoscape software. As a result, we found that some hub genes (including JNK2, AKT1/2/3, PAK7, TRPS1, BCL2L11, and IKZF2) were targeted by 12 potential miRNAs (including miR-302b-3p, miR-291a-5p, miR-139-3p, miR-467c-3p, miR-186-3p, etc.). Subsequently, we identified five upregulated miRNA via quantitative polymerase chain reaction and all of them were confirmed increased significantly in aged skin tissues compared with young control tissues. Among them, high expression of miR-302b-3p was verified in both aged skin tissues and senescence fibroblasts. Furthermore, miR-302b-3p mimic accelerated skin fibroblast senescence and suppressed the longevity-associated gene Sirtuin 1(Sirt1) expression, whereas miR-302b-3p inhibitor could delay skin fibroblast senescence and contribute Sirt1 expression. In addition, we demonstrated that c-Jun N-terminal kinase 2(JNK2) is a direct target of miR-302b-3p by a luciferase reporter assay. An inverse correlation was verified in fibroblasts between miR-302b-3p and JNK2. Most importantly, siRNA JNK2 confirmed that low expression of JNK2 could accelerate fibroblasts senescence. In conclusion, our results indicated that overexpressed miR-302b-3p plays an important biological role in accelerating skin aging process via directly targeting JNK2 gene.  相似文献   

10.

Background

The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer.

Results

We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein.

Conclusions

Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.  相似文献   

11.
Colon cancer (CC) is the third most common neoplasm and the fourth cause of cancer-related death worldwide in both sexes. It has been established that inflammation plays a critical role in tumorigenesis and progression of CC. Immune, stromal and tumor cells supply the tumor microenvironment with pro-inflammatory cytokines such as interleukin 1β, TNFα, IL-6 and IL-11, to hyperactivate signaling pathways linked to cancerous processes. Recent findings suggest a putative role of microRNAs (miRNAs) in the progression and management of the inflammatory response in intestinal diseases. Moreover, miRNAs are able to regulate expression of molecular mediators that are linking inflammation and cancer. In this work a miRNA panel differentially expressed between healthy, inflammatory bowel disease (IBD) and CC tissue was established. Identified miRNAs regulate signaling pathways related to inflammation and cancer progression. An inflammation associated-miRNA panel composed of 11-miRNAs was found to be overexpressed in CC but not in inflamed or normal tissues (miR-21-5p, miR-304-5p, miR-577, miR-335-5p, miR-21-3p, miR-27b-5p, miR-335-3p, miR-215-5p, miR-30b-5p, miR-192-5p, miR-3065-5p). The association of top hit miRNAs, miR-3065-5p and miR-30b-5p expression with overall survival of CC patients was demonstrated using Kaplan-Meier tests. Finally, differential miRNA expression was validated using an inflammation-associated CC model induced by Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) to compare miRNA expression in normal and inflamed tissue versus CC tissues. Based on these findings we propose the identified inflammatory miRNA panel as a potent diagnostic tool for CC determination.  相似文献   

12.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, metastasis accounts for most of the cases. Angiogenesis plays an important role in cancer metastasis, but how tumor cells affect the function of endothelial cells by dictating their microRNA (miRNA) expression remains largely unknown.Differentially expressed miRNAs (DEMs) were identified through dataset downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. We then used online tools to obtain potential targets of candidate miRNAs and functional enrichment analysis, as well as the protein-protein interaction (PPI). Finally, the function of miR-302c-3p was validated through in vitro assay.In the current study, we found that HCC cells altered miRNA expression profiles of human umbilical vein endothelial cells (HUVECs) and miR-302c-3p was the most down-regulated miRNA in HUVECs when they were co-cultured with HCC-LM3 cells. Functional enrichment analysis of the candidate targets revealed that these genes were involved in epigenetic regulation of gene expression, in particular, cytosine methylation. In addition, PPI network demonstrated distinct roles of genes targeted by miR-302c-3p. Importantly, inhibition of angiogenesis, migration and permeability by the most down-regulated miR-302c-3p in HUVECs was confirmed in vitro. These findings brought us novel insight into the regulation of angiogenesis by HCC cells and provided potential targets for the development of therapeutic strategies.  相似文献   

13.
MicroRNAs (miRNAs) are small noncoding RNAs that contribute to tumorigenesis by acting as oncogenes or tumor suppressor genes and may be important in the diagnosis, prognosis and treatment of cancer. Many miRNA genes have associated CpG islands, suggesting epigenetic regulation of their expression. Compared with sporadic cancers, the role of miRNAs in hereditary or familial cancer is poorly understood. We investigated 96 colorectal carcinomas, 58 gastric carcinomas and 41 endometrial carcinomas, occurring as part of inherited DNA mismatch repair (MMR) deficiency (Lynch syndrome), familial colorectal carcinoma without MMR gene mutations or sporadically. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assays were developed for 11 miRNA loci that were chosen because all could be epigenetically regulated through the associated CpG islands and some could additionally modulate the epigenome by putatively targeting the DNA methyltransferases or their antagonist retinoblastoma-like 2 (RBL2). Compared with the respective normal tissues, the predominant alteration in tumor tissues was increased methylation for the miRNAs 1-1, 124a-1, 124a-2, 124a-3, 148a, 152 and 18b; decreased methylation for 200a and 208a; and no major change for 373 and let-7a-3. The frequencies with which the individual miRNA loci were affected in tumors showed statistically significant differences relative to the tissue of origin (colorectal versus gastric versus endometrial), MMR proficiency versus deficiency and sporadic versus hereditary disease. In particular, hypermethylation at miR-148a and miR-152 was associated with microsatellite-unstable (as opposed to stable) tumors and hypermethylation at miR-18b with sporadic disease (as opposed to Lynch syndrome). Hypermethylation at miRNA loci correlated with hypermethylation at classic tumor suppressor promoters in the same tumors. Our results highlight the importance of epigenetic events in hereditary and sporadic cancers and suggest that MS-MLPA is an excellent choice for quantitative analysis of methylation in archival formalin-fixed, paraffin-embedded samples, which pose challenges to many other techniques commonly used for methylation studies.  相似文献   

14.
15.
16.
17.
18.
Previous studies have demonstrated a close relationship between abnormal regulation of microRNA (miRNA) and various types of diseases, including epilepsy and other neurological disorders of memory. However, the role of miRNA in the memory impairment observed in epilepsy remains unknown. In this study, a model of temporal lobe epilepsy (TLE) was induced via pentylenetetrazol (PTZ) kindling in Sprague-Dawley rats. First, the TLE rats were subjected to Morris water maze to identify those with memory impairment (TLE-MI) compared with TLE control rats (TLE-C), which presented normal memory. Both groups were analyzed to detect dysregulated miRNAs in the hippocampus; four up-regulated miRNAs (miR-34c, miR-374, miR-181a, and miR-let-7c-1) and seven down-regulated miRNAs (miR-1188, miR-770-5p, miR-127-5p, miR-375, miR-331, miR-873-5p, and miR-328a) were found. Some of the dysregulated miRNAs (miR-34c, miR-1188a, miR-328a, and miR-331) were confirmed using qRT-PCR, and their blood expression patterns were identical to those of their counterparts in the rat hippocampus. The targets of these dysregulated miRNAs and other potentially enriched biological signaling pathways were analyzed using bioinformatics. Following these results, the MAPK, apoptosis and hippocampal signaling pathways might be involved in the molecular mechanisms underlying the memory disorders of TLE.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号