首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples.

Results

False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values.

Conclusions

Our results highlighted the need for combined use of more sensitive DEG analysis methods and high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological replicate samples.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1767-y) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Qiu W  Lee ML 《Bioinformation》2006,1(7):251-252
Calculation of the appropriate sample size in planning microarray studies is important because sample collection can be expensive and time-consuming. Sample-size calculation is also a challenging issue for microarray studies because the number of genes is far larger than the number of samples so that traditional methods of sample-size calculation cannot be directly applied. To help investigators answer the question of how many samples are needed in their microarray studies, we developed a user-friendly web-based calculator, SPCalc, for calculating sample size and power for a variety of commonly used experimental designs, including completely randomized treatmentcontrol design, matched-pairs design, multiple-treatment design having an isolated treatment effect, and randomized block design. AVAILABILITY: The web-based calculator SPCalc is publicly available at http://www.biostat.harvard.edu /people/faculty/mltlee/webfront-r.html.  相似文献   

6.
Rapid development of next generation sequencing technology has enabled the identification of genomic alterations from short sequencing reads. There are a number of software pipelines available for calling single nucleotide variants from genomic DNA but, no comprehensive pipelines to identify, annotate and prioritize expressed SNVs (eSNVs) from non-directional paired-end RNA-Seq data. We have developed the eSNV-Detect, a novel computational system, which utilizes data from multiple aligners to call, even at low read depths, and rank variants from RNA-Seq. Multi-platform comparisons with the eSNV-Detect variant candidates were performed. The method was first applied to RNA-Seq from a lymphoblastoid cell-line, achieving 99.7% precision and 91.0% sensitivity in the expressed SNPs for the matching HumanOmni2.5 BeadChip data. Comparison of RNA-Seq eSNV candidates from 25 ER+ breast tumors from The Cancer Genome Atlas (TCGA) project with whole exome coding data showed 90.6–96.8% precision and 91.6–95.7% sensitivity. Contrasting single-cell mRNA-Seq variants with matching traditional multicellular RNA-Seq data for the MD-MB231 breast cancer cell-line delineated variant heterogeneity among the single-cells. Further, Sanger sequencing validation was performed for an ER+ breast tumor with paired normal adjacent tissue validating 29 out of 31 candidate eSNVs. The source code and user manuals of the eSNV-Detect pipeline for Sun Grid Engine and virtual machine are available at http://bioinformaticstools.mayo.edu/research/esnv-detect/.  相似文献   

7.
RNA-Seq technologies are quickly revolutionizing genomic studies, and statistical methods for RNA-seq data are under continuous development. Timely review and comparison of the most recently proposed statistical methods will provide a useful guide for choosing among them for data analysis. Particular interest surrounds the ability to detect differential expression (DE) in genes. Here we compare four recently proposed statistical methods, edgeR, DESeq, baySeq, and a method with a two-stage Poisson model (TSPM), through a variety of simulations that were based on different distribution models or real data. We compared the ability of these methods to detect DE genes in terms of the significance ranking of genes and false discovery rate control. All methods compared are implemented in freely available software. We also discuss the availability and functions of the currently available versions of these software.  相似文献   

8.
Methods are presented for detecting differential expression using statistical hypothesis testing methods including analysis of variance (ANOVA). Practicalities of experimental design, power, and sample size are discussed. Methods for multiple testing correction and their application are described. Instructions for running typical analyses are given in the R programming environment. R code and the sample data set used to generate the examples are available at http://microarray.cpmc.columbia.edu/pavlidis/pub/aovmethods/.  相似文献   

9.
10.
Current practice in the normalization of microbiome count data is inefficient in the statistical sense. For apparently historical reasons, the common approach is either to use simple proportions (which does not address heteroscedasticity) or to use rarefying of counts, even though both of these approaches are inappropriate for detection of differentially abundant species. Well-established statistical theory is available that simultaneously accounts for library size differences and biological variability using an appropriate mixture model. Moreover, specific implementations for DNA sequencing read count data (based on a Negative Binomial model for instance) are already available in RNA-Seq focused R packages such as edgeR and DESeq. Here we summarize the supporting statistical theory and use simulations and empirical data to demonstrate substantial improvements provided by a relevant mixture model framework over simple proportions or rarefying. We show how both proportions and rarefied counts result in a high rate of false positives in tests for species that are differentially abundant across sample classes. Regarding microbiome sample-wise clustering, we also show that the rarefying procedure often discards samples that can be accurately clustered by alternative methods. We further compare different Negative Binomial methods with a recently-described zero-inflated Gaussian mixture, implemented in a package called metagenomeSeq. We find that metagenomeSeq performs well when there is an adequate number of biological replicates, but it nevertheless tends toward a higher false positive rate. Based on these results and well-established statistical theory, we advocate that investigators avoid rarefying altogether. We have provided microbiome-specific extensions to these tools in the R package, phyloseq.  相似文献   

11.
12.
SUMMARY: We present Serial SimCoal, a program that models population genetic data from multiple time points, as with ancient DNA data. An extension of SIMCOAL, it also allows simultaneous modeling of complex demographic histories, and migration between multiple populations. Further, we incorporate a statistical package to calculate relevant summary statistics, which, for the first time allows users to investigate the statistical power provided by, conduct hypothesis-testing with, and explore sample size limitations of ancient DNA data. AVAILABILITY: Source code and Windows/Mac executables at http://www.stanford.edu/group/hadlylab/ssc.html CONTACT: senka@stanford.edu.  相似文献   

13.
14.
15.
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.  相似文献   

16.
HMMGEP: clustering gene expression data using hidden Markov models   总被引:3,自引:0,他引:3  
SUMMARY: The package HMMGEP performs cluster analysis on gene expression data using hidden Markov models. AVAILABILITY: HMMGEP, including the source code, documentation and sample data files, is available at http://www.bioinfo.tsinghua.edu.cn:8080/~rich/hmmgep_download/index.html.  相似文献   

17.
18.
19.
20.
Through sequencing projects and, more recently, array-based expression analysis experiments, a wealth of genetic data has become accessible via online resources. In contrast, few of the (molecular-) cytogenetic aberration data collected in the last decades are available in a format suitable for data mining procedures. www.progenetix.net is a new online repository for previously published chromosomal aberration data, allowing the addition of band-specific information about chromosomal imbalances to oncologic data analysis efforts. AVAILABILITY: http://www.progenetix.net CONTACT: mbaudis@stanford.edu  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号