首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial progenitor cells (EPCs) contribute to neovasculogenesis and reendothelialization of damaged blood vessels to maintain the endothelium. Dysfunction of EPCs is implicated in the pathogenesis of vascular injury induced by homocysteine (Hcy). We aimed to investigate the role of Cyclin A in Hcy-induced EPCs dysfunction and explore its molecular mechanism. In this study, by treatment of EPCs with Hcy, we found that the expression of Cyclin A mRNA and protein were significantly downregulated in a dose-dependent manner. Knockdown of Cyclin A prominently reduced proliferation of EPCs, while over-expression of Cyclin A significantly promoted the cell proliferation, suggesting that Hcy inhibits EPCs proliferation through downregulation of Cyclin A expression. In addition, epigenetic study also demonstrated that Hcy induces DNA hypomethylation of the Cyclin A promoter in EPCs through downregulated expression of DNMT1. Moreover, we found that Hcy treatment of EPCs leads to increased SAM, SAH and MeCP2, while the ratio of SAM/SAH and MBD expression decrease. In summary, our results indicate that Hcy inhibits Cyclin A expression through hypomethylation of Cyclin A and thereby suppress EPCs proliferation. These findings demonstrate a novel mechanism of DNA methylation mediated by DNMT1 in prevention of Hcy associated cardiovascular disease.  相似文献   

2.

Background

Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.

Methodology/Principal Finding

Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.

Conclusions/Significance

A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.  相似文献   

3.
4.
Endothelial progenitor cells (EPCs), circulating in peripheral blood, migrate toward target tissue, differentiate, and contribute to the formation of new vessels. In this study, we report that shear stress generated by blood flow or tissue fluid flow can accelerate the proliferation, differentiation, and capillary-like tube formation of EPCs. When EPCs cultured from human peripheral blood were subjected to laminar shear stress, the cells elongated and oriented their long axes in the direction of flow. The cell density of the EPCs exposed to shear stress was higher, and a larger percentage of these cells were in the G2-M phase of the cell cycle, compared with EPCs cultured under static conditions. Shear stress markedly increased the EPC expression of two vascular endothelial growth factor receptors, kinase insert domain-containing receptor and fms-like tyrosine kinase-1, and an intercellular adhesion molecule, vascular endothelial-cadherin, at both the protein and mRNA levels. Assays for tube formation in the collagen gels showed that the shear-stressed EPCs formed tubelike structures and developed an extensive tubular network significantly faster than the static controls. These findings suggest that EPCs are sensitive to shear stress and that their vasculogenic activities may be modulated by shear stress.  相似文献   

5.
The aim of this investigation was to determine whether tumour necrosis factor-alpha (TNF-α) has any effect on endothelial progenitor cells (EPCs). Total mononuclear cells were isolated from peripheral blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture dishes. After 7 days culture, attached cells were stimulated with tumour necrosis factor-α (final concentrations: 0, 10, 20, 50 and 100 mg/l) for 0, 6, 12, 24 and 48 h. EPCs were characterized as adherent cells double positive for DiLDL-uptake and lectin binding, by direct fluorescence staining. EPC proliferation and migration were assayed using the MTT assay and modified Boyden chamber assay, respectively. EPC adhesion assay was performed by re-plating those cells on fibronectin-coated dishes, and adherent cells were counted. Tube formation activity was assayed using a tube formation kit. Levels of apoptosis were revealed using an annexin V apoptosis detection kit. Vascular endothelial growth factor Receptor-1 (VEGF-R1) and stromal derived factor-1 (SDF-1) mRNA, assessed by real-time RT-PCR inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were assayed by western blot analysis. Incubation of EPCs with tumour necrosis factor-α reduced EPC proliferation, migration, adhesion, tube formation capacity, iNOS and eNOS in concentration- and time-dependent manners. Tumour necrosis factor-α reduced proliferation, migration, adhesion and tube formation capacity of EPCs. TNF-α increased EPC apoptosis level, reduced VEGF-R1 and SDF-1 mRNA expression; tumour necrosis factor-α also reduced iNOS and eNOS in the EPCs.  相似文献   

6.
Endothelial progenitor cells (EPCs) have been reported to replace the damaged endothelial cells to repair the injured or dead endothelium. However, EPC senescence might lead to the failure in EPC function. Thus, developing an in-depth understanding of the mechanism of EPC senescence might provide novel strategies for related vascular disorders’ treatments. Herein, nicotinamide phosphoribosyltransferase (NAMPT) overexpression could increase cell proliferation and suppress cell senescence in EPCs. miR-223 directly bound to the 3′-untranslated region of NAMPT to inhibit its expression, therefore modulating EPC proliferation and senescence through NAMPT and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. Long noncoding RNA (lncRNA) GAS5 sponges miR-223, consequently downregulating miR-223 expression. GAS5 knockdown inhibited EPC proliferation and promoted senescence. GAS5 might serve as a competing endogenous RNA for miR-223 to counteract miR-223-mediated suppression on NAMPT, thus regulating EPC proliferation and senescence via the PI3K/AKT signaling pathway. In summary, our findings provide a solid experimental basis for understanding the role and mechanism of lncRNA GAS5/miR-223/NAMPT axis in EPC proliferation and senescence.  相似文献   

7.
SCIN (scinderin) is a calcium-dependent actin severing and capping protein. Homologue in zebrafish has been found to be related with cell death. In the present study, we found that SCIN is highly expressed in human lung cancer specimens. However, the role of SCIN in lung cancer has not yet been determined. To investigate the function of SCIN in lung carcinoma cells, we took advantage of lentivirus-mediated RNA interference (RNAi) to knockdown SCIN expression in two lung carcinoma cell lines A549 and H1299. Silencing of SCIN significantly inhibited the proliferation and colony formation ability of both cell lines in vitro. Moreover, flow cytometry analysis showed that knockdown of SCIN led to G0/G1 phase cell cycle arrest as well as an excess accumulation of cells in the sub-G1 phase. Furthermore, depletion of SCIN resulted in a significant increase in Cyclin B1, p21 and PARP expression, and a little decrease in Cyclin D1 expression. These results suggest that SCIN plays an important role in lung carcinoma cell proliferation, and lentivirus-mediated silencing of SCIN might be a potential therapeutic approach for the treatment of lung cancer.  相似文献   

8.
Smad4是TGF-β/Smad信号通路的核心下游信号分子.为探明Smad4基因对猪卵巢颗粒细胞增殖及细胞周期的影响,采用RNA干扰技术,设计并合成猪Smad4基因的靶向小分子干扰RNA,由LipofectamineTMRNAiMix介导转染体外培养的猪卵巢颗粒细胞.应用实时荧光定量PCR检测Smad4mRNA的干扰效果,应用MTT法、流式细胞术检测细胞增殖和细胞周期的变化,同时应用荧光定量PCR检测转染前后CyclinD1、CyclinB、CyclinA2、CDK1、CDK2、CDK4等周期相关基因的mRNA表达量的变化.实验结果显示,靶向猪Smad4的特异性siRNA序列对Smad4mRNA表达的抑制率为79.85%(P0.01);沉默Smad4可以显著抑制猪卵巢颗粒细胞增殖,并且改变细胞周期分布,G0/G1期细胞比例显著高于各对照组(P0.05),S期细胞比例显著低于各对照组(P0.05),细胞分裂被阻滞;转染36h后CyclinD1、CDK1的mRNA表达量显著低于对照组,CyclinA2、CDK2、CDK4极显著低于对照组,CyclinB差异不显著.综上所述,Smad4是影响猪卵巢颗粒细胞增殖及细胞周期进程的重要基因之一.  相似文献   

9.
该文通过shRNA干扰技术敲低IscU2干扰细胞IscU2的表达,研究了干扰IscU2对非小细胞肺癌(NSCLC)细胞NCI-H520增殖、迁移及侵袭能力的影响。构建了稳定低表达IscU2的非小细胞肺癌细胞系NCI-H520;采用CCK-8和平板克隆实验检测细胞的增殖能力;流式细胞仪检测细胞周期、凋亡、ROS、线粒体膜电位变化情况;Transwell实验检测细胞迁移及侵袭能力;Western blot检测相关蛋白的表达。结果表明,干扰IscU2后,非小细胞肺癌细胞的增殖及克隆形成能力降低;细胞周期停滞在G1/G0期,同时伴随有p-AKT和Cyclin D1蛋白含量的下降;细胞晚期凋亡率明显增加,凋亡蛋白Cleaved-caspase3和Cleaved-PARP表达上调;细胞迁移和侵袭能力降低,上皮标志物E-Cadherin表达上调,间质标志物N-Cadherin和Snail表达下调;细胞ROS积累和线粒体膜电位下降。该研究结果表明,干扰IscU2显著抑制非小细胞肺癌的增殖、迁移、侵袭能力和上皮–间质转化,这为非小细胞肺癌的诊断和治疗提供了新的潜在靶点和视角。  相似文献   

10.
11.
Here, we investigated the effects and molecular mechanisms of metabotropic glutamate receptor 6 (mGluR6) on rat embryonic neural stem cells (NSCs). Overexpression of mGluR6 significantly promoted the proliferation of NSCs and increased the diameter of neutrospheres after treatment for 24 h, 48 h and 72 h. Overexpression of mGluR6 promoted G1 to S phase transition, with significantly decreased cell ratio in G1/G0 phase but significantly increased cell ratio in S phase. Additionally, mGluR6 overexpression for 48 h decreased the early and late apoptosis significantly. Moreover, overexpression of mGluR6 significantly increased the expression of p-ERK1/2, Cyclin D1 and CDK2, while the expression of p-p38 was significantly decreased. On the contrary, these effects of mGluR6 overexpression were reversed by mGluR6 knockdown. In conclusion, mGluR6 promotes the proliferation of NSCs by activation of ERK1/2-Cyclin D1/CDK2 signaling pathway and inhibits the apoptosis of NSCs by blockage of the p38 MAPK signaling pathway.  相似文献   

12.
Xia WH  Li J  Su C  Yang Z  Chen L  Wu F  Zhang YY  Yu BB  Qiu YX  Wang SM  Tao J 《Aging cell》2012,11(1):111-119
Endothelial progenitor cells (EPCs) play an important role in repairing endothelial injury. Aging is associated with EPC dysfunction. Physical exercise has a beneficial impact on EPC activity. However, whether physical exercise can enhance the endothelial repair capacity of EPCs in healthy men with aging is not clear. Here, we investigated the effects of physical exercise on reendothelialization capacity and CXC chemokine receptor four (CXCR4) signaling in human EPCs. Before and after 12-week exercise, EPCs were isolated from elderly and young men. In vitro function and in vivo reendothelialization capacity of EPCs in a mouse model of carotid artery injury were measured. The expression of CXCR4 and its downstream signaling target Janus kinase-2 (JAK-2) were determined. Before exercise, in vitro function and in vivo reendothelialization capacity of EPCs were significantly reduced in elderly men compared with young men. After exercise intervention, in vitro function and in vivo reendothelialization capacity of EPCs from elderly men were markedly enhanced. Physical exercise increased a higher CXCR4 protein expression and higher JAK-2 phosphorylation levels of EPCs. The augmentation in reendothelialization capacity of EPCs was closely correlated with the upregulation of CXCR4/JAK-2 signaling and improvement of endothelial function. This study demonstrates for the first time that physical exercise attenuates age-associated reduction in endothelium-reparative capacity of EPCs by increasing CXCR4/JAK-2 signaling. Our findings provide insight into the novel mechanisms of physical exercise as a lifestyle intervention strategy to promote vascular health in aging population.  相似文献   

13.
Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy.  相似文献   

14.
15.
The enhancement of re-endothelialisation is a critical therapeutic option for repairing injured blood vessels. Endothelial progenitor cells (EPCs) are the major source of cells that participate in endothelium repair and contribute to re-endothelialisation by reducing neointima formation after vascular injury. The over-expression of the inhibitor of differentiation or DNA binding 1 (Id1) significantly improved EPC proliferation. This study aimed to investigate the effects of Id1 on the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor kappa B (NFκB)/survivin signalling pathway and its significance in promoting EPC proliferation in vitro. Spleen-derived EPCs were cultured as previously described. Id1 was presented at low levels in EPCs, and was rapidly up-regulated by stimulation with vascular endothelial growth factor. We demonstrated that transient transfection of Id1 into EPCs activated the PI3K/Akt/NFκB/survivin signalling pathway and promoted EPC proliferation. The proliferation of EPCs was extensively inhibited by silencing of endogenous Id1, and knockdown of Id1 expression led to suppression of PI3K/Akt/NFκB/survivin signalling pathway in EPCs. In addition, blockade by the PI3K-specific inhibitor LY294002, Akt inhibitor, the NFκB inhibitor BAY 11-7082, the survivin inhibitor Curcumin, or the survivin inhibitor YM155 reduced the effects of Id1 transfection. These results suggest that the Id1/PI3K/Akt/NFκB/survivin signalling pathway plays a critical role in EPC proliferation. The Id1/PI3K/Akt/NFκB/survivin signalling pathway may represent a novel therapeutic target in the prevention of restenosis after vascular injury.  相似文献   

16.
17.
18.
The health-related hazards resulting from long-term exposure to radiation remain unknown. Thus, an appropriate molecular marker is needed to clarify these effects. Cyclin D1 regulates the cell cycle transition from the G1 phase to the S phase. Cyclin D1 is degraded as a G1/S checkpoint after 10 Gy of single acute radiation exposure, whereas conversely, cyclin D1 is stabilized when human tumor cells are exposed to fractionated radiation (FR) with 0.5 Gy of x-rays for 31 d. In this article, we review new findings regarding cyclin D1 overexpression in response to long-term exposure to FR. Cyclin D1 overexpression is associated with induction of genomic instability in irradiated cells. Therefore, repression of cyclin D1 expression is likely to cancel the harmful effects of long-term exposure to FR. Thus cyclin D1 may be a marker of long-term exposure to radiation and is a putative molecular radioprotection target for radiation safety.  相似文献   

19.

Background

New vessel formation plays a pivotal role in the pathogenesis of neovascular-related diseases. Endothelial progenitor cells (EPCs) were found to contribute to neovascular-related diseases and interference with EPC neovascularization may be a novel target for these diseases. Zoledronate (Zol) was reported to exhibit anti-angiogenic effect. Basing on these evidences, we proposed that Zol may affect EPC function to exert novel anti-angiogenic effect. In this study, we therefore investigated the effects of Zol on multiple aspects of EPC function and explored the underlying mechanisms involved.

Methodology/Principal Findings

EPCs were cultured from bone marrow derived mononuclear cells. The potential effects of Zol on Angiotensin II (Ang II)-stimulated EPC proliferation, migration, adhesion, in vitro tube formation were investigated. The results showed that Ang II (1 µM) enhanced EPC migration, adhesion, in vitro tube formation but had no effect on cell proliferation. Zol (75 and 100 µM) inhibited proliferation of EPCs and 50 µM geranylgeranyol (GGOH) could reverse the decrease of EPC proliferation. We found for the first time that Zol (50–100 µM) dose dependently attenuated migration, adhesion, and in vitro tube formation of EPCs stimulated by Ang II. GGOH could reverse the attenuation of EPC function induced by Zol. However, Zol did not induce EPC apoptosis. In addition, the underlying mechanisms were determined. The results revealed that Zol markedly down-regulated active RhoA stimulated by Ang II and inhibited the phosphorylation of Erk1/2 and JNK. Moreover, RhoA silencing resulted in a notable inhibition of EPC in vitro tube formation, suggesting that RhoA suppression played a pivotal role in Zol antiangiogenic effect.

Conclusions/Significance

These findings suggested that Zol attenuated the promotion of EPC function stimulated by Ang II and exhibited novel antiangiogenic effect via RhoA and MAPK signaling. Thus, Zol may be served as a novel therapeutic agent for neovascular-related diseases treatment.  相似文献   

20.
CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p=0.0383), lymph node metastasis (p=0.0091) and Ki67 proliferation index (p=0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号