首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction and disability. Focal bone erosion is due to excess bone resorption of osteoclasts. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the critical mediators both in inflammatory signal pathway and differentiation and resorption activity of osteoclasts. Here we aimed to investigate TRAF6 expression in RA synovium and its correlation with histological synovitis severity and radiological joint destruction in RA.

Methods

Synovitis score was determined in needle biopsied synovium from 44 patients with active RA. Synovium from nine patients with osteoarthritis (OA) and seven with orthopedic arthropathies (Orth.A) were enrolled as "less inflamed" disease controls. Serial sections were stained immunohistochemically for TRAF6 as well as CD68 (macrophage), CD3 (T cell), CD20 (B cell), CD38 (plasmocyte), CD79a (B lineage cells from pre-B cell to plasmocyte stage), and CD34 (endothelial cell). Double immunofluorescence staining of TRAF6 and CD68 were tested. Densities of positive staining cells were determined and correlated with histological disease activity (synovitis score) and radiographic joint destruction (Sharp score).

Results

TRAF6 expression was found in the intimal and subintimal area of RA synovium, with intense staining found in the endochylema and nucleus of intimal synoviocytes and subintimal inflammatory cells. Double immunofluorescence staining showed TRAF6 was expressed in most of the intimal cells and obviously expressed in CD68+ cells and some other CD68- cells in subintimal area. Synovial TRAF6 was significantly over-expressed in the RA group compared with the OA and Orth.A group (2.53 ± 0.94 vs. 0.72 ± 0.44 and 0.71 ± 0.49, P < 0.0001). Synovial TRAF6 expression in RA correlated significantly with synovitis score (r = 0.412, P = 0.006), as well as the inflammatory cell infiltration (r = 0.367, P = 0.014). Significant correlation was detected between synovial TRAF6 expression and intimal CD68+ cells, as well as the cell density of subintimal CD68+ cells, CD3+ cells, CD20+ cells, CD38+ cells, and CD79a+ cells (all P < 0.05).

Conclusions

Elevated synovial TRAF6 expression correlated with synovitis severity and CD68+ cell density in RA. It is, therefore, hypothesized that synovial TRAF6 is involved in the pathogenesis of synovial inflammation and osteoclast differentiation in RA.  相似文献   

2.

Introduction

Ultrasonography (US) might have an added value to clinical examination in diagnosing early rheumatoid arthritis (RA) and assessing remission of RA. We aimed to clarify the added value of US in RA in these situations performing a systematic review.

Methods

A systematic literature search was performed for RA, US, diagnosis and remission. Methodological quality was assessed; the wide variability in the design of studies prohibited pooling of results.

Results

Six papers on the added value of US diagnosing early RA were found, in which at least bilateral metacarpophalangeal (MCP), wrists and metatarsophalangeal (MTP) joints were scanned. Compared to clinical examination, US was superior with regard to detecting synovitis and predicting progression to persistent arthritis or RA. Eleven papers on assessing remission were identified, in which at least the wrist and the MCP joints of the dominant hand were scanned. Often US detected inflammation in patients clinically in remission, irrespective of the remission criteria used. Power Doppler signs of synovitis predicted X-ray progression and future flare in patients clinically in remission.

Conclusions

US appears to have added value to clinical examination for diagnosing of RA when scanning at least MCP, wrist and MTP joints, and, when evaluating remission of RA, scanning at least wrist and MCP joints of the dominant hand. For both purposes primarily power Doppler US might be used since its results are less equivocal than those of greyscale US.  相似文献   

3.

Introduction

CD4+CD25+/highCD127low/- regulatory T cells (Tregs) play a crucial role in maintaining peripheral tolerance. Data about the frequency of Tregs in rheumatoid arthritis (RA) are contradictory and based on the analysis of peripheral blood (PB) and synovial fluid (SF). Because Tregs exert their anti-inflammatory activity in a contact-dependent manner, the analysis of synovial membrane (SM) is crucial. Published reports regarding this matter are lacking, so we investigated the distribution and phenotype of Tregs in concurrent samples of SM, SF and PB of RA patients in comparison to those of osteoarthritis (OA) patients.

Methods

Treg frequency in a total of 40 patients (18 RA and 22 OA) matched for age and sex was assessed by flow cytometry. Functional status was assessed by analysis of cell surface markers representative of activation, memory and regulation.

Results

CD4+ T cells infiltrate the SM to higher frequencies in RA joints than in OA joints (P = 0.0336). In both groups, Tregs accumulate more within the SF and SM than concurrently in PB (P < 0.0001). Relative Treg frequencies were comparable in all compartments of RA and OA, but Treg concentration was significantly higher in the SM of RA patients (P = 0.025). Both PB and SM Tregs displayed a memory phenotype (CD45RO+RA-), but significantly differed in activation status (CD69 and CD62L) and markers associated with Treg function (CD152, CD154, CD274, CD279 and GITR) with only minor differences between RA and OA.

Conclusions

Treg enrichment into the joint compartment is not specific to inflammatory arthritis, as we found that it was similarly enriched in OA. RA pathophysiology might not be due to a Treg deficiency, because Treg concentration in SM was significantly higher in RA. Synovial Tregs represent a distinct phenotype and are activated effector memory cells (CD62L-CD69+), whereas peripheral Tregs are resting central memory cells (CD62L+CD69-).  相似文献   

4.
5.
6.

Background

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1β and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA).

Methods

Celastrol was administered to AIA rats both in the early (4 days after disease induction) and late (11 days after disease induction) phases of arthritis development. The inflammatory score, ankle perimeter and body weight were evaluated during treatment period. Rats were sacrificed after 22 days of disease progression and blood, internal organs and paw samples were collected for toxicological blood parameters and serum proinflammatory cytokine quantification, as well as histopathological and immunohistochemical evaluation, respectively.

Results

Here we report that celastrol significantly decreases the number of sublining CD68 macrophages and the overall synovial inflammatory cellularity, and halted joint destruction without side effects.

Conclusions

Our results validate celastrol as a promising compound for the treatment of arthritis.  相似文献   

7.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease in which prostaglandin E2 (PGE2) displays an important pathogenic role. The enzymes involved in its synthesis are highly expressed in the inflamed synovium, while little is known about 15- prostaglandin dehydrogenase (15-PGDH) that metabolizes PGE2. Here we aimed to evaluate the localization of 15-PGDH in the synovial tissue of healthy individuals or patients with inflammatory arthritis and determine the influence of common RA therapy on its expression.

Methods

Synovial tissue specimens from healthy individuals, psoriatic arthritis, ostheoarthritis and RA patients were immunohistochemically stained to describe the expression pattern of 15-PGDH. In addition, the degree of enzyme staining was evaluated by computer analysis on stained synovial biopsies from two groups of RA patients, before and after RA specific treatment with either intra-articular glucocorticoids or oral methotrexate therapy. Prostaglandins derived from the cyclooxygenase (COX) pathway were determined by liquid-chromatography mass spectrometry in supernatants from interleukin (IL) 1β-activated fibroblast-like synoviocytes (FLS) treated with methotrexate.

Results

15-PGDH was present in healthy and inflamed synovial tissue, mainly in lining macrophages, fibroblasts and vessels. Intra-articular glucocorticoids showed a trend towards reduced 15-PGDH expression in RA synovium (p = 0.08) while methotrexate treatment left the PGE2 pathway unaltered both in biopsies ex vivo and in cultured FLS.

Conclusions

Early methotrexate therapy has little influence on the expression of 15-PGDH and on any of the PGE2 synthesizing enzymes or COX-derived metabolites. Thus therapeutic strategies involving blocking induced PGE2 synthesis may find a rationale in additionally reducing local inflammatory mediators.  相似文献   

8.

Introduction

This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their production is related to in vitro tissue formation by chondrocytes from diseased and healthy tissue.

Methods

Samples were obtained from donors without joint pathology (n = 39), with focal defects (n = 65) and osteoarthritis (n = 61). A multiplex bead assay (Luminex) was performed measuring up to 21 cytokines: Interleukin (IL)-1α, IL-1β, IL-1RA, IL-4, IL-6, IL-6Rα, IL-7, IL-8, IL-10, IL-13, tumor necrosis factor (TNF)α, Interferon (IFN)γ, oncostatin M (OSM), leukemia inhibitory factor (LIF), adiponectin, leptin, monocyte chemotactic factor (MCP)1, RANTES, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), vascular growth factor (VEGF).

Results

In synovial fluid of patients with cartilage pathology, IL-6, IL-13, IFNγ and OSM levels were higher than in donors without joint pathology (P ≤0.001). IL-13, IFNγ and OSM were also different between donors with cartilage defects and OA (P <0.05). In cartilage tissue from debrided defects, VEGF was higher than in non-pathological or osteoarthritic joints (P ≤0.001). IL-1α, IL-6, TNFα and OSM concentrations (in ng/ml) were markedly higher in cartilage tissue than in synovial fluid (P <0.01). Culture of chondrocytes generally led to a massive induction of most cytokines (P <0.001). Although the release of inflammatory cytokines was also here dependent on the pathological condition (P <0.001) the actual profiles were different from tissue or synovial fluid and between non-expanded and expanded chondrocytes. Cartilage formation was lower by healthy unexpanded chondrocytes than by osteoarthritic or defect chondrocytes.

Conclusions

Several pro-inflammatory, pro-angiogenic and pro-repair cytokines were elevated in joints with symptomatic cartilage defects and/or osteoarthritis, although different cytokines were elevated in synovial fluid compared to tissue or cells. Hence a clear molecular profile was evident dependent on disease status of the joint, which however changed in composition depending on the biological sample analysed. These alterations did not affect in vitro tissue formation with these chondrocytes, as this was at least as effective or even better compared to healthy chondrocytes.  相似文献   

9.

Introduction

Members of the peptidylarginine deiminase (PAD) family catalyse the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullination of proteins is well described in rheumatoid arthritis (RA), and hypercitrullination of proteins may be related to inflammation in general. PAD activity has been demonstrated in various cell lysates, but so far not in synovial fluid. We aimed to develop an assay for detection of PAD activity, if any, in synovial fluid from RA patients.

Methods

An enzyme-linked immunosorbent assay using human fibrinogen as the immobilized substrate for citrullination and anti-citrullinated fibrinogen antibody as the detecting agent were used for measurement of PAD activity in synovial fluid samples from five RA patients. The concentrations of PAD2 and calcium were also determined.

Results

Approximately 150 times lower levels of recombinant human PAD2 (rhPAD2) than of rhPAD4 were required for citrullination of fibrinogen. PAD activity was detected in four of five synovial fluid samples from RA patients and correlated with PAD2 concentrations in the samples (r = 0.98, P = 0.003). The calcium requirement for half-maximal activities of PAD2 and PAD4 were found in a range from 0.35 to 1.85 mM, and synovial fluid was found to contain sufficient calcium levels for the citrullination process to occur.

Conclusions

We present an assay with high specificity for PAD2 activity and show that citrullination of fibrinogen can occur in cell-free synovial fluid from RA patients.  相似文献   

10.

Introduction

Despite the widespread use of magnetic resonance imaging (MRI) and Doppler ultrasound for the detection of rheumatoid arthritis (RA) disease activity, little is known regarding the association of imaging-detected activity and synovial pathology. The purpose of this study was to compare site-specific release of inflammatory mediators and evaluate the corresponding anatomical sites by examining colour Doppler ultrasound (CDUS) and MRI scans.

Methods

RA patients were evaluated on the basis of CDUS and 3-T MRI scans and subsequently underwent synovectomy using a needle arthroscopic procedure of the hand joints. The synovial tissue specimens were incubated for 72 hours, and spontaneous release of monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), macrophage inflammatory protein 1β (MIP-1β) and IL-8 was measured by performing multiplex immunoassays. Bone marrow oedema (BME), synovitis and erosion scores were estimated on the basis of the rheumatoid arthritis magnetic resonance imaging score (RAMRIS). Mixed models were used for the statistical analyses. Parsimony was achieved by omitting covariates with P > 0.1 from the statistical model.

Results

Tissue samples from 58 synovial sites were obtained from 25 patients. MCP-1 was associated with CDUS activity (P = 0.009, approximate Spearman’s ρ = 0.41), RAMRIS BME score (P = 0.01, approximate Spearman’s ρ = 0.42) and RAMRIS erosion score (P = 0.03, approximate Spearman’s ρ = 0.31). IL-6 was associated with RAMRIS synovitis score (P = 0.04, approximate Spearman’s ρ = 0.50), BME score (P = 0.04, approximate Spearman’s ρ = 0.31) and RAMRIS erosion score (P = 0.03, approximate Spearman’s ρ = 0.35). MIP-1β was associated with CDUS activity (P = 0.02, approximate Spearman’s ρ = 0.38) and RAMRIS synovitis scores (P = 0.02, approximate Spearman’s ρ = 0.63). IL-8 associations with imaging outcome measures did not reach statistical significance.

Conclusions

The association between imaging activity and synovial inflammatory mediators underscores the high sensitivity of CDUS and MRI in the evaluation of RA disease activity. The associations found in our present study have different implications for synovial mediator releases and corresponding imaging signs. For example, MCP-1 and IL-6 were associated with both general inflammation and bone destruction, in contrast to MIP-1β, which was involved solely in general synovitis. The lack of association of IL-8 with synovitis was likely underestimated because of a large proportion of samples above assay detection limits among the patients with the highest synovitis scores.  相似文献   

11.

Introduction

B cells may play an important role in promoting immune activation in the rheumatoid synovium and can produce prostaglandin E2 (PGE2) when activated. In its turn, PGE2 formed by cyclooxygenase (COX) and microsomal prostaglandin E2 synthase 1 (MPGES1) contributes to the rheumatoid arthritis (RA) pathological process. Therapeutic depletion of B cells results in important improvement in controlling disease activity in rheumatoid patients. Therefore we investigated the expression of PGE2 pathway enzymes in RA B cells and evaluated the effects of B cell depleting therapy on their expression in RA tissue.

Methods

B cells expressing MPGES1 and COX-2 were identified by flow cytometry in in vitro stimulated and control mononuclear cells isolated from synovial fluid and peripheral blood of RA patients. Synovial biopsies were obtained from 24 RA patients before and at two consecutive time points after rituximab therapy. Expression of MPGES1, COX-1 and COX-2, as well as interleukin (IL)-1β and IL-6, known inducers of MPGES1, was quantified in immunostained biopsy sections using computerized image analysis.

Results

Expression of MPGES1 or COX-2 was significantly upregulated upon stimulation of B cells from blood and synovial fluid while control cells displayed no detectable enzymes. In synovial biopsy sections, the expression of MPGES1, COX-1 or COX-2 was resistant to rituximab therapy at 8 or 16 weeks after start of treatment. Furthermore expression of IL-1β in the synovial tissue remained unchanged, while IL-6 tended to decrease after therapy.

Conclusions

Therapy with B cell depleting agents, although efficient in achieving good clinical and radiographic response in RA patients, leaves important inflammatory pathways in the rheumatoid synovium essentially unaffected.  相似文献   

12.

Introduction

We aimed to investigate the expression and therapeutic modulation of the receptor activator of the NF-κB ligand (RANKL) system in early-untreated rheumatoid arthritis (RA).

Methods

In this study, 15 patients with newly diagnosed RA (median symptom duration 7 months) were started on methotrexate (MTX) 20 mg weekly. Synovial biopsies were obtained by needle arthroscopy at baseline and 8 weeks after initiation of therapy. X-rays of the hands and feet were obtained at baseline and 1 year after diagnosis. Immunohistochemistry was performed to detect RANKL, receptor activator of nuclear factor-κB (RANK) and osteoprotegerin (OPG) in the synovial biopsies. The in vitro effect of MTX was tested on RA-derived primary fibroblasts and the osteoblasts-like osteosarcoma cell line (rtPCR, Western blot and ELISA) and in osteoclasts (tartrate-resistant acid phosphatase staining and dentine pit formation assay).

Results

MTX decreased synovial cellularity as well as RANK expression and the RANKL/OPG ratio. We confirmed this effect by a decrease of the mRNA and protein RANKL/OPG ratio in synovial-derived fibroblasts and osteoblasts-like tumoral cells exposed in vitro to methotrexate. Supernatants from MTX treated osteoblasts-like tumoral cells prevented pre-osteoclast formation in the absence of exogenous RANKL. Furthermore, MTX blocked osteoclastogenesis from peripheral blood mononuclear cells despite the presence of macrophage colony stimulating factor and RANKL, which indicates that MTX directly inhibits osteoclastogenesis.

Conclusions

The synovial membrane of early-untreated RA is characterized by a high RANKL/OPG ratio that can be reversed by methotrexate.  相似文献   

13.
14.

Introduction

It is known that anticitrullinated peptide antibody (ACPA)–positive rheumatoid arthritis (RA) has a preclinical phase. Whether this phase is also present in ACPA-negative RA is unknown. To determine this, we studied ACPA-negative arthralgia patients who were considered prone to progress to RA for local subclinical inflammation observed on hand and foot magnetic resonance imaging (MRI) scans.

Methods

We studied a total of 64 ACPA-negative patients without clinically detectable arthritis and with arthralgia of the small joints within the previous 1 year. Because of the character of the patients’ symptoms, the rheumatologists considered these patients to be prone to progress to RA. For comparisons, we evaluated 19 healthy, symptom-free controls and 20 ACPA-negative RA patients, who were identified according to the 1987 American Rheumatism Association criteria. All participants underwent MRI of unilateral wrist, metacarpophalangeal and metatarsophalangeal joints. Synovitis and bone marrow oedema (BME) were scored according to the OMERACT rheumatoid arthritis magnetic resonance imaging scoring system, and the scores were summed to yield the ‘MRI inflammation score’. Scores were compared between groups. Among the ACPA-negative arthralgia patients, MRI inflammation scores were related to C-reactive protein (CRP) levels and the tenderness of scanned joints.

Results

MRI inflammation scores increased progressively among the groups of controls and ACPA-negative arthralgia and RA patients (median scores = 0, 1 and 10, respectively; P < 0.001). The MRI inflammation scores of ACPA-negative arthralgia patients were significantly higher than those of controls (P = 0.018). In particular, the synovitis scores were higher in ACPA-negative arthralgia patients (P = 0.046). Among the ACPA-negative arthralgia patients, inflammation was observed predominantly in the wrist (53%). The synovitis scores were associated with CRP levels (P = 0.007) and joint tenderness (P = 0.026). Despite the limited follow-up duration, five patients developed clinically detectable arthritis. These five patients had higher scores for MRI inflammation (P = 0.001), synovitis (P = 0.002) and BME (P = 0.003) compared to the other patients.

Conclusion

Subclinical synovitis was observed in the small joints of ACPA-negative arthralgia patients, and especially in patients whose conditions progressed to clinically detectable arthritis. This finding suggests the presence of a preclinical phase in ACPA-negative RA. Further longitudinal studies of these lesions and patients are required to confirm this hypothesis.  相似文献   

15.

Introduction

We evaluated the presence of Porphyromonas gingivalis (Pg) DNA in the synovial tissue through synovial biopsy and in other compartments of rheumatoid arthritis (RA) patients in comparison with patients affected by other arthritides. Possible links with clinical, immunologic and genetic features were assessed.

Methods

Peripheral blood (PB), sub-gingival dental plaque, synovial fluid (SF) and synovial tissue samples were collected from 69 patients with active knee arthritis (32 with RA and 37 with other arthritides, of which 14 had undifferentiated peripheral inflammatory arthritis - UPIA). Demographic, clinical, laboratory and immunological data were recorded. The presence of Pg DNA was evaluated through PCR. The HLA-DR haplotype was assessed for 45 patients with RA and UPIA.

Results

No differences arose in the positivity for Pg DNA in the sub-gingival plaque, PB and SF samples between RA and the cohort of other arthritides. Full PB samples showed a higher positivity for Pg DNA than plasma samples (11.8% vs. 1.5%, P = 0.04). Patients with RA showed a higher positivity for Pg DNA in the synovial tissue compared to controls (33.3% vs. 5.9%, P <0.01). UPIA and RA patients carrying the HLA DRB1*04 allele showed a higher positivity for Pg DNA in the synovial tissue compared to patients negative for the allele (57.1% vs. 16.7%, P = 0.04). RA patients positive for Pg DNA in the sub-gingival plaque had a lower disease duration and a higher peripheral blood leucocyte and neutrophil count. The presence of Pg DNA did not influence disease activity, disease disability or positivity for autoantibodies.

Conclusions

The presence of Pg DNA in the synovial tissue of RA patients suggests a pathogenic role of the bacterium. The higher positivity of Pg DNA in full peripheral blood and synovial tissue samples compared to plasma and synovial fluid suggests a possible intracellular localization of Pg, in particular in patients positive for HLA-DR4.  相似文献   

16.
17.

Introduction

Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA.

Methods

Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice.

Results

Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group.

Conclusion

CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation.  相似文献   

18.

Introduction

Intra-articular glucocorticoid treatment (IAGC) is widely used for symptom relief in arthritis. However, knowledge of factors predicting treatment outcome is limited. The aim of the present study was to identify response predictors of IAGC for knee synovitis in patients with rheumatoid arthritis (RA).

Methods

In this study 121 RA patients with synovitis of the knee were treated with intra-articular injections of 20 mg triamcinolone hexacetonide. They were followed for six months and the rate of clinical relapse was studied. Non-responders (relapse within 6 months) and responders were compared regarding patient characteristics and knee joint damage as determined by the Larsen-Dale index. In addition, matched samples of serum and synovial fluid were analysed for factors reflecting the inflammatory process (C-reactive protein, interleukin 6, tumour necrosis factor alpha, vascular endothelial growth factor), joint tissue turnover (cartilage oligomeric matrix protein, metalloproteinase 3), and autoimmunity (antinuclear antibodies, antibodies against citrullinated peptides, rheumatoid factor).

Results

During the observation period, 48 knees relapsed (40%). Non-responders had more radiographic joint damage than responders (P = 0.002) and the pre-treatment vascular endothelial growth factor (VEGF) level in synovial fluid was significantly higher in non-responders (P = 0.002).

Conclusions

Joint destruction is associated with poor outcome of IAGC for knee synovitis in RA. In addition, higher levels of VEGF in synovial fluid are found in non-responders, suggesting that locally produced VEGF is a biomarker for recurrence of synovial hyperplasia and the risk for arthritis relapse.  相似文献   

19.

Introduction

Psoriatic arthritis (PsA) is an inflammatory joint disease associated with psoriasis. Alefacept (a lymphocyte function-associated antigen (LFA)-3 Ig fusion protein that binds to CD2 and functions as an antagonist to T-cell activation) has been shown to result in improvement in psoriasis but has limited effectiveness in PsA. Interleukin-20 (IL-20) is a key proinflammatory cytokine involved in the pathogenesis of psoriasis. The effects of alefacept treatment on IL-20 expression in the synovium of patients with psoriasis and PsA are currently unknown.

Methods

Eleven patients with active PsA and chronic plaque psoriasis were treated with alefacept (7.5 mg per week for 12 weeks) in an open-label study. Skin biopsies were taken before and after 1 and 6 weeks, whereas synovial biopsies were obtained before and 4 and 12 weeks after treatment. Synovial biopsies from patients with rheumatoid arthritis (RA) (n = 10) were used as disease controls. Immunohistochemical analysis was performed to detect IL-20 expression, and stained synovial tissue sections were evaluated with digital image analysis. Double staining was performed with IL-20 and CD68 (macrophages), and conversely with CD55 (fibroblast-like synoviocytes, FLSs) to determine the phenotype of IL-20-positive cells in PsA synovium. IL-20 expression in skin sections (n = 6) was analyzed semiquantitatively.

Results

IL-20 was abundantly expressed in both PsA and RA synovial tissues. In inflamed PsA synovium, CD68+ macrophages and CD55+ FLSs coexpressed IL-20, and its expression correlated with the numbers of FLSs. IL-20 expression in lesional skin of PsA patients decreased significantly (P = 0.04) 6 weeks after treatment and correlated positively with the Psoriasis Area and Severity Index (PASI). IL-20 expression in PsA synovium was not affected by alefacept.

Conclusions

Conceivably, the relatively limited effectiveness of alefacept in PsA patients (compared with anti-tumor necrosis factor (TNF) therapy) might be explained in part by persistent FLS-derived IL-20 expression.  相似文献   

20.

Introduction

Patients with rheumatoid arthritis (RA) have disturbances in the hypothalamic-pituitary-adrenal (HPA) axis. These are reflected in altered circadian rhythm of circulating serum cortisol, melatonin and IL-6 levels and in chronic fatigue. We hypothesized that the molecular machinery responsible for the circadian timekeeping is perturbed in RA. The aim of this study was to investigate the expression of circadian clock in RA.

Methods

Gene expression of thirteen clock genes was analyzed in the synovial membrane of RA and control osteoarthritis (OA) patients. BMAL1 protein was detected using immunohistochemistry. Cell autonomous clock oscillation was started in RA and OA synovial fibroblasts using serum shock. The effect of pro-inflammatory stimulus on clock gene expression in synovial fibroblasts was studied using IL-6 and TNF-α.

Results

Gene expression analysis disclosed disconcerted circadian timekeeping and immunohistochemistry revealed strong cytoplasmic localization of BMAL1 in RA patients. Perturbed circadian timekeeping is at least in part inflammation independent and cell autonomous, because RA synovial fibroblasts display altered circadian expression of several clock components, and perturbed circadian production of IL-6 and IL-1β after clock resetting. However, inflammatory stimulus disturbs the rhythm in cultured fibroblasts. Throughout the experiments ARNTL2 and NPAS2 appeared to be the most affected clock genes in human immune-inflammatory conditions.

Conclusion

We conclude that the molecular machinery controlling the circadian rhythm is disturbed in RA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号