首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase), but at body temperature (37°C), a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in P. marneffei that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of P. marneffei.

Results

Whole cell proteins from the early stages of mould and yeast development in P. marneffei were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated RanA, was subsequently cloned and characterized. The P. marneffei RanA protein sequence, which contained the signature motif of Ran-GTPases, exhibited 90% homology to homologous Aspergillus proteins.

Conclusion

This study clearly demonstrates the utility of proteomic approaches to studying dimorphism in P. marneffei. Moreover, this strategy complements and extends current genetic methodologies directed towards understanding the molecular mechanisms of phase transition. Finally, the documented increased levels of RanA expression suggest that cellular development in this fungus involves additional signaling mechanisms than have been previously described in P. marneffei.  相似文献   

3.
Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems.  相似文献   

4.
The biosynthesis of melanin has been linked with virulence in diverse pathogenic fungi. Penicillium marneffei, a dimorphic fungus, is capable of melanization in both mycelial and yeast phases, and the pigment may be produced during infection to protect the fungus from the host immune system. To investigate the impact of yeast morphological transformation on antifungal susceptibility, P. marneffei was cultured on various media including minimal medium, 1 % tryptone, brain heart infusion broth, and malt extract broth by using the standardized susceptibility protocol (the M27-A protocol, RPMI medium) for yeasts. We also investigated whether P. marneffei melanization affected its susceptibility to antifungal drugs by adding l-DOPA into culture broths. There were no differences in the minimum inhibitory concentrations of P. marneffei yeast cells previously grown in various culture broths with or without l-DOPA using the M27A protocol (into which no melanin substrate can be added due to a rapid colour change of the RPMI medium to black) for testing amphotericin B, clotrimazole, fluconazole, itraconazole and ketoconazole. However, both melanized and non-melanized P. marneffei displayed increased resistance to antifungal drugs when l-DOPA was added into a selected assay medium, 0.17 % yeast nitrogen base, 2 % glucose, and 1.5 % agar. Hence, active melanin formation appears to protect P. marneffei by enhancing its resistance to antifungal drugs.  相似文献   

5.
Penicillium marneffei is an opportunistic pathogen of humans and displays a temperature dependent dimorphic transition. Like many fungi, exogenous DNA introduced by DNA mediated transformation is integrated randomly into the genome resulting in inefficient gene deletion and position-specific effects. To enhance successful gene targeting, the consequences of perturbing components of the non-homologous end joining recombination pathway have been examined. The deletion of the KU70 and LIG4 orthologs, pkuA and ligD, respectively, dramatically enhanced the observed homologous recombination frequency leading to efficient gene deletion. While ΔpkuA was associated with reduced genetic stability over-time, ΔligD represents a suitable recipient strain for downstream applications and combined with a modified Gateway? system for the rapid generation of gene deletion constructs, this represents an efficient pipeline for characterizing gene function in P. marneffei.  相似文献   

6.

Background

The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS) genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS) genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes.

Methodology/Principal Findings

All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS) and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05). There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05).

Conclusions/Significance

The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid. Mitorubrinol and mitorubrinic acid are virulence factors of P. marneffei by improving its intracellular survival in macrophages.  相似文献   

7.
Ornithine decarboxylase in Paracoccidioides brasiliensis, a dimorphic human pathogenic fungus, was more active at 37° C in the yeast phase and at 30° C in the mycelial phase. In contrast to other fungal systems, yeast growth and mycelium-to-yeast transition in P. brasiliensis were accompanied by a high activity of ornithine decarboxylase at the onset of the budding process, the activity of which was inhibited by 1,4-diamino-2-butanone. The activity of ornithine decarboxylase remained at a basal level during vegetative growth of both the mycelial phase and the late stage of yeast phase, and also through the yeast-to-mycelium transition. Received: 18 December 1995 / Accepted: 8 March 1996  相似文献   

8.
The ascomycete Penicillium marneffei is an opportunistic human pathogen exhibiting a temperature-dependent dimorphic switch. At 25°C, P. marneffei grows as filamentous multinucleate hyphae and undergoes asexual development, producing uninucleate spores. At 37°C, it forms uninucleate yeast cells which divide by fission. We have cloned a gene encoding a Gα subunit of a heterotrimeric G protein from P. marneffei named gasA with high similarity to fadA in Aspergillus nidulans. Through the characterization of a ΔgasA strain and mutants carrying a dominant activating or a dominant interfering gasA allele, we show that GasA is a key regulator of asexual development but seems to play no role in the regulation of growth. A dominant activating gasA mutant whose mutation results in a G42-to-R change (gasAG42R) does not express brlA, the conidiation-specific regulatory gene, and is locked in vegetative growth, while a dominant interfering gasAG203R mutant shows inappropriate brlA expression and conidiation. Interestingly, the gasA mutants have no apparent defect in dimorphic switching or yeast-like growth at 37°C. Growth tests on dibutyryl cyclic AMP (dbcAMP) and theophylline suggest that a cAMP-protein kinase A cascade may be involved in the GasA signaling pathway.  相似文献   

9.
10.
11.
12.
13.
14.
The dimorphic pathogenic fungus Paracoccidioides brasiliensis can grow as a prototroph for organic sulfur as a mycelial (non-pathogenic) form, but it is unable to assimilate inorganic sulfur as a yeast (pathogenic) form. Temperature and the inability to assimilate inorganic sulfur are the single conditions known to affect P. brasiliensis mycelium-to-yeast (M-Y) dimorphic transition. For a comprehensive evaluation of genes that have their expression modulated during the M-Y transition in different culture media, we performed a large-scale analysis of gene expression using a microarray hybridization approach. The results of the present work demonstrate the use of microarray hybridization analysis to examine gene expression during the M-Y transition in minimal medium and compare these results with the M-Y transition in complete medium. Our results showed that about 95% of the genes in our microarray are mainly responding to the temperature trigger, independently of the media where the M-Y transition took place. As a preliminary step to understand the inorganic sulfur inability in P. brasiliensis yeast form, we decided to characterize the mRNA accumulation of several genes involved in different aspects of both organic and inorganic sulfur assimilation. Our results suggest that although P. brasiliensis cannot use inorganic sulfur as a single sulfur source to initiate both M-Y transition and Y growth, the fungus can somehow use both organic and inorganic pathways during these growth processes.  相似文献   

15.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   

16.
Talaromyces marneffei is a thermally dimorphic fungus that causes opportunistic systemic mycoses in patients with AIDS or other immunodeficiency syndromes. The purpose of this study was to develop an immunochromatographic strip test (ICT) based on a solid phase sandwich format immunoassay for the detection of T. marneffei antigens in clinical urine specimens. The T. marneffei yeast phase specific monoclonal antibody 4D1 (MAb4D1) conjugated with colloidal gold nanoparticle was used as a specific signal reporter. Galanthus nivalis Agglutinin (GNA) was adsorbed onto nitrocellulose membrane to serve as the test line. Similarly, a control line was created above the test line by immobilization of rabbit anti-mouse IgG. The immobilized GNA served as capturing molecule and as non-immune mediated anti-terminal mannose of T. marneffei antigenic mannoprotein. The MAb4D1–GNA based ICT showed specific binding activity with yeast phase antigen of T. marneffei, and it did not react with other common pathogenic fungal antigens. The limit of detection of this ICT for T. marneffei antigen spiked in normal urine was approximately 0.6 μg/ml. The diagnostic performance of the ICT was validated using 341 urine samples from patents with culture- confirmed T. marneffei infection and from a control group of healthy individuals and patients with other infections in an endemic area. The ICT exhibited 89.47% sensitivity, 100% specificity, and 97.65% accuracy. Our results demonstrate that the urine-based GNA–MAb4D1 based ICT produces a visual result within 30 minutes and that the test is highly specific for the diagnosis of T. marneffei infection. The findings validate the deployment of the ICT for clinical use.  相似文献   

17.
18.
19.
20.
Talaromyces marneffei causes life-threatening infections in immunocompromised hosts. An efficient tool for genetic manipulation of T. marneffei will allow for increased understanding of this thermally dimorphic fungus. Agrobacterium tumefaciens-mediated transformation (ATMT) was optimized for targeted gene disruption in T. marneffei using the plasmid pDHt/acuD::pyrG. Molecular analyses of transformants were performed by PCR, Southern blot and semi-quantitative RT-PCR. A. tumefaciens strain EHA105 was more efficient at transformation than strain AGL-1 in ATMT via solid co-cultivation. An A. tumefaciens:T. marneffei ratio of 1000:1 in an ATMT liquid co-cultivation led to a relatively high transformation efficiency of 90 transformants per 106 yeast cells. Using ATMT-mediated knockout mutagenesis, we successfully deleted the acuD gene in T. marneffei. PCR and Southern blot analysis confirmed that acuD was disrupted and that the foreign pyrG gene was integrated into T. marneffei. Semi-quantitative RT-PCR analysis further confirmed that pyrG was expressed normally. These results suggest that ATMT can be a potential platform for targeted gene disruption in T. marneffei and that liquid co-cultivation may provide new opportunities to develop clinical treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号