共查询到20条相似文献,搜索用时 0 毫秒
1.
Jai S. Rohila Mei Chen Shuo Chen Johann Chen Ronald L. Cerny Christopher Dardick Patrick Canlas Hiroaki Fujii Michael Gribskov Siddhartha Kanrar Lucas Knoflicek Becky Stevenson Mingtang Xie Xia Xu Xianwu Zheng Jian-Kang Zhu Pamela Ronald Michael E. Fromm 《PloS one》2009,4(8)
Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex. 相似文献
2.
Klaus B. Nissen Linda M. Haugaard-Kedstr?m Theis S. Wilbek Line S. Nielsen Emma ?berg Anders S. Kristensen Anders Bach Per Jemth Kristian Str?mgaard 《PloS one》2015,10(2)
PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. 相似文献
3.
Hub proteins are proteins that maintain promiscuous molecular recognition. Because they are reported to play essential roles in cellular control, there has been a special interest in the study of their structural and functional properties, yet the mechanisms by which they evolve to maintain functional interactions are poorly understood. By combining biophysical simulations of coarse-grained proteins and analysis of proteins-complex crystallographic structures, we seek to elucidate those mechanisms. We focus on two types of hub proteins: Multi hubs, which interact with their partners through different interfaces, and Singlish hubs, which do so through a single interface. We show that loss of structural stability is required for the evolution of protein-protein-interaction (PPI) networks, and it is more profound in Singlish hub systems. In addition, different ratios of hydrophobic to electrostatic interfacial amino acids are shown to support distinct network topologies (i.e., Singlish and Multi systems), and therefore underlie a fundamental design principle of PPI in a crowded environment. We argue that the physical nature of hydrophobic and electrostatic interactions, in particular, their favoring of either same-type interactions (hydrophobic-hydrophobic), or opposite-type interactions (negatively-positively charged) plays a key role in maintaining the network topology while allowing the protein amino acid sequence to evolve. 相似文献
4.
Daniela Aschenbrenner Diana A. Pippig Kamila Klamecka Katja Limmer Heinrich Leonhardt Hermann E. Gaub 《PloS one》2014,9(12)
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. 相似文献
5.
6.
7.
8.
9.
蛋白质相互作用的生物信息学研究进展 总被引:2,自引:0,他引:2
生命过程的分子基础在于生物分子之间的相互作用,其中蛋白质分子之间的相互作用占有极其重要的地位。研究蛋白质相互作用对于理解生命的真谛、探讨致病微生物的致病机理,以及研究新药提高人们的健康水平具有重要的作用。用生物信息学的方法研究蛋白质的相互作用已经取得了许多重要的成果,但也有很多问题还需解决。本文从蛋白质相互作用的数据库、预测方法、可预测蛋白质相互作用的网上服务、蛋白质相互作用网络等几方面,对蛋白质相互作用的生物信息学研究成果及其存在的问题做了概述。 相似文献
10.
Herman H. H. B. M. van Haagen Peter A. C. 't Hoen Alessandro Botelho Bovo Antoine de Morrée Erik M. van Mulligen Christine Chichester Jan A. Kors Johan T. den Dunnen Gert-Jan B. van Ommen Silvère M. van der Maarel Vinícius Medina Kern Barend Mons Martijn J. Schuemie 《PloS one》2009,4(11)
We have developed a method that predicts Protein-Protein Interactions (PPIs) based on the similarity of the context in which proteins appear in literature. This method outperforms previously developed PPI prediction algorithms that rely on the conjunction of two protein names in MEDLINE abstracts. We show significant increases in coverage (76% versus 32%) and sensitivity (66% versus 41% at a specificity of 95%) for the prediction of PPIs currently archived in 6 PPI databases. A retrospective analysis shows that PPIs can efficiently be predicted before they enter PPI databases and before their interaction is explicitly described in the literature. The practical value of the method for discovery of novel PPIs is illustrated by the experimental confirmation of the inferred physical interaction between CAPN3 and PARVB, which was based on frequent co-occurrence of both proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships between proteins predicted by our method are broader than PPIs, and include proteins in the same complex or pathway. Dependent on the type of relationships deemed useful, the precision of our method can be as high as 90%. The full set of predicted interactions is available in a downloadable matrix and through the webtool Nermal, which lists the most likely interaction partners for a given protein. Our framework can be used for prioritizing potential interaction partners, hitherto undiscovered, for follow-up studies and to aid the generation of accurate protein interaction maps. 相似文献
11.
12.
13.
The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI) study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping) and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks received some degree of functional annotation which represents an important contribution since approximately 60% of Leishmania predicted proteomes has no predicted function. 相似文献
14.
Protein-protein interactions (PPIs) have been widely studied to understand the bi-ological processes or molecular functions associated with different disease systems like cancer. While focused studies on individual cancers have generated valuable in-formation, global and comparative analysis of datasets from different cancer types has not been done. In this work, we carried out bioinformatic analysis of PPIs corresponding to differentially expressed genes from microarrays of various tumor tissues (belonging to bladder, colon, kidney and thyroid cancers) and compared their associated biological processes and molecular functions (based on Gene On-tology terms). We identified a set of processes or functions that are common to all these cancers, as well as those that are specific to only one or partial cancer types. Similarly, protein interaction networks in nucleic acid metabolism were compared to identify the common/specific clusters of proteins across different cancer types. Our results provide a basis for further experimental investigations to study protein interaction networks associated with cancer. The methodology developed in this work can also be applied to study similar disease systems. 相似文献
15.
Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain inter- actions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as "interacting". In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele- gans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area un- der the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs in- creased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on aver- age 4 times better than those predicted by either phylogenetic profiling or gene expression profiling. 相似文献
16.
17.
Sushmita Roy Diego Martinez Harriett Platero Terran Lane Margaret Werner-Washburne 《PloS one》2009,4(11)
Background
Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information.Results
AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins.Conclusion
AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains. 相似文献18.
19.
Mahmood A. Mahdavi Yen-Han Lin 《基因组蛋白质组与生物信息学报(英文版)》2007,(4):177-186
Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain inter- actions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as “interacting“. In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele- gans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area un- der the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs in- creased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on aver- age 4 times better than those predicted by either phylogenetic profiling or gene expression profiling. 相似文献