首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1‐3) and one regulatory (PKAr) subunits to integrate cAMP‐dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down‐regulation of PKAc1 or stabilisation of a dominant‐negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP‐phosphodiesterase. Concordantly, inhibition of the cGMP‐dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP‐phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.  相似文献   

5.
Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.  相似文献   

6.
Cardiac oxidative ATP generation is finely tuned to match several-fold increases in energy demand. Calcium has been proposed to play a role in the activation of ATP production via PKA phosphorylation in response to intramitochondrial cAMP generation. We evaluated the effect of cAMP, its membrane permeable analogs (dibutyryl-cAMP, 8-bromo-cAMP), and the PKA inhibitor H89 on respiration of isolated pig heart mitochondria. cAMP analogs did not stimulate State 3 respiration of Ca2 +-depleted mitochondria (82.2 ± 3.6% of control), in contrast to the 2-fold activation induced by 0.95 μM free Ca2 +, which was unaffected by H89. Using fluorescence and integrating sphere spectroscopy, we determined that Ca2 + increased the reduction of NADH (8%), and of cytochromes bH (3%), c1 (3%), c (4%), and a (2%), together with a doubling of conductances for Complex I + III and Complex IV. None of these changes were induced by cAMP analogs nor abolished by H89. In Ca2 +-undepleted mitochondria, we observed only slight changes in State 3 respiration rates upon addition of 50 μM cAMP (85 ± 9.9%), dibutyryl-cAMP (80.1 ± 5.2%), 8-bromo-cAMP (88.6 ± 3.3%), or 1 μM H89 (89.7 ± 19.9%) with respect to controls. Similar results were obtained when measuring respiration in heart homogenates. Addition of exogenous PKA with dibutyryl-cAMP or the constitutively active catalytic subunit of PKA to isolated mitochondria decreased State 3 respiration by only 5–15%. These functional studies suggest that alterations in mitochondrial cAMP and PKA activity do not contribute significantly to the acute Ca2 + stimulation of oxidative phosphorylation.  相似文献   

7.
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to “short” bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.  相似文献   

8.
Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.  相似文献   

9.
10.
11.
12.
13.
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.  相似文献   

14.
In this study, the applicability of fluorescently labeled adenosine analogue-oligoarginine conjugates (ARC-Photo probes) for monitoring of protein kinase A (PKA) activity in living cells was demonstrated. ARC-Photo probes possessing subnanomolar affinity towards the catalytic subunit of PKA (PKAc) and competitive with the regulatory subunit (PKAr), penetrate cell plasma membrane and associate with PKAc fused with yellow fluorescent protein (PKAc-YFP). Detection of inter-molecular Förster resonance energy transfer (FRET) efficiency between the fluorophores of the fusion protein and ARC-Photo probe can be used for both the evaluation of non-labeled inhibitors of PKAc and for monitoring of cAMP signaling via detection of changes in the activity of PKA as a cAMP downstream effector.  相似文献   

15.
Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T. vaginalis infection and intracellular Cl disequilibrium remains elusive. This study showed that after T. vaginalis infection, CFTR was markedly down-regulated by cysteine proteases in vaginal epithelial cells. The intracellular Cl concentration ([Cl]i) was consequently elevated, leading to NF-κB signalling activation via serum- and glucocorticoid-inducible kinase-1. Moreover, heightened [Cl]i and activated NF-κB signalling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP through NF-κB-mediated up-regulation of phosphodiesterase 4. The results conclusively revealed that the intracellular Cl of the human vaginal epithelium could be dynamically modulated by T. vaginalis, which contributed to mediation of epithelial inflammation in the human vagina.  相似文献   

16.
Neutrophils play an important role in the human immune system for protection against such microorganisms as a protozoan parasite, Trichomonas vaginalis; however, the precise role of neutrophils in the pathogenesis of trichomoniasis is still unknown. Moreover, it is thought that trichomonal lysates and excretory-secretory products (ESP), as well as live T. vaginalis, could possibly interact with neutrophils in local tissues, including areas of inflammation induced by T. vaginalis in humans. The aim of this study was to investigate the influence of T. vaginalis lysate on the fate of neutrophils. We found that T. vaginalis lysate inhibits apoptosis of human neutrophils as revealed by Giemsa stain. Less altered mitochondrial membrane potential (MMP) and surface CD16 receptor expression also supported the idea that neutrophil apoptosis is delayed after T. vaginalis lysate stimulation. In contrast, ESP stimulated-neutrophils were similar in apoptotic features of untreated neutrophils. Maintained caspase-3 and myeloid cell leukemia-1 (Mcl-1) in neutrophils co-cultured with trichomonad lysate suggest that an intrinsic mitochondrial pathway of apoptosis was involved in T. vaginalis lysate-induced delayed neutrophil apoptosis; this phenomenon may contribute to local inflammation in trichomoniasis.  相似文献   

17.
Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 by HMDM. The involvement of nuclear factor (NF)-κB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-κB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-κB activation and TNF-α production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-κB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-α. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, and NO. In particular, we showed that T. vaginalis induced TNF-α production in macrophages through NO-dependent activation of NF-κB, which might be closely involved in inflammation caused by T. vaginalis.  相似文献   

18.

Background

Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite''s genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.

Methodology/Principal Findings

Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.

Conclusions/Significance

Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.  相似文献   

19.
Proline transport in Kirsten sarcoma virus-transformed BALB 3T3 (Ki-3T3) cells was increased approximately twofold by 0.5 mm dibutyryl cAMP (dbcAMP), and the increase was observed whether transport was assayed in the presence or absence of cycloheximide. Two days of exposure to the analog was required for maximum stimulation. Increased proline transport contributed almost entirely to the increased incorporation of [14C]proline into noncollagen protein but for only 13% of the increased incorporation into collagen of dbcAMP-treated Ki-3T3 cells. Proline transport was further characterized using an assay system containing 0.1 mm cycloheximide, which did not affect transport over a 30-min period. The Km for proline was decreased from 6.5 to 3.4 mm by dbcAMP treatment of Ki-3T3. Proline transport in Ki-3T3 proceeds almost entirely via the A system, and the effect of dbcAMP appears to be on this system specifically since glycine and glutamine transport, which are heterogeneous, were not affected but transport of N-methylaminoisobutyrate, a specific A system substrate, was increased by dbcAMP treatment. Although 0.5 mm butyrate increased proline transport in Ki-3T3 cells to a similar degree as dbcAMP, the effect of the latter appeared related to its action as a cAMP analog since N6-monobutyryl cAMP, having a stable butyryl group, and 8-bromo-cAMP also increased proline transport while dbcGMP did not. The rate of proline transport in normal BALB 3T3 cells was only 30–40% lower than that of Ki-3T3 cells at various growth stages, and dbcAMP and 8-bromo-cAMP treatment also increased proline transport in the normal cells. The results of these studies suggest that dbcAMP and other cAMP analogs induce the synthesis of an altered component of the A system for amino acid transport and that the effect of these compounds is unrelated to the effect of transformation on proline transport.  相似文献   

20.
Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl and HCO3. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl and HCO3 secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号