首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioredoxin-interacting protein (TXNIP) is induced by high glucose (HG), whereupon it acts to inhibit thioredoxin, thereby promoting oxidative stress. We have found that TXNIP knockdown in human renal tubular cells helped prevent the epithelial-to-mesenchymal transition (EMT). Here, we studied the potential effect of TXNIP on podocyte phenotypic alterations in diabetic nephropathy (DN) in vivo and in vitro. In conditionally immortalized mouse podocytes under HG conditions, knocking down TXNIP disrupted EMT, reactive oxygen species (ROS) production, and mammalian target of rapamycin (mTOR) pathway activation. Further, Raptor short hairpin RNA (shRNA), Rictor shRNA, and mTOR specific inhibitor KU-0063794 were used to assess if the mTOR signal pathway is involved in HG-induced EMT in podocytes. We found that Raptor shRNA, Rictor shRNA, and KU-0063794 could all restrain HG-induced EMT and ROS production in podocytes. In addition, antioxidant Tempol or N-acetylcysteine presented a prohibitive effect on HG-induced EMT in podocytes. Streptozotocin was utilized to render equally diabetic in wild-type (WT) control and TXNIP −/− (TKO) mice. Diabetes did not increase levels of 24-hr urinary protein, serum creatinine, blood urea nitrogen, and triglyceride in TXNIP −/− mice. Podocyte phenotypic alterations and podocyte loss were detected in WT but not in TKO diabetic mice. Oxidative stress was also suppressed in diabetic TKO mice relative to WT controls. Also, TXNIP deficiency suppresses the activation of mTOR in glomeruli of streptozotocin-induced diabetic mice. Moreover, TXNIP expression, mTOR activation, Nox1, and Nox4 could be detected in renal biopsy tissues of patients with DN. This suggests that decreased TXNIP could ameliorate phenotypic alterations of podocytes via inhibition of mTOR in DN, highlighting TXNIP as a promising therapeutic target.  相似文献   

2.
Vascular endothelial growth factor (VEGF)-dependent signals are central to many endothelial cell (EC) functions, including survival and regulation of vascular tone. Akt and endothelial nitric oxide synthase (eNOS) activity are implicated to mediate these effects. Dysregulated signaling is characteristic of endothelial dysfunction that sensitizes the glomerular microvasculature to injury. Signaling intermediates that couple VEGF stimulation to eNOS activity remain unclear; hence, we examined the PI3 kinase isoforms implicated to regulate these enzymes. Using a combination of small molecule inhibitors and RNAi to study responses to VEGF in glomerular EC, we observed that the PI3 kinase p110α catalytic isoform is coupled to VEGFR2 and regulates the bulk of Akt activity. Coimmunoprecipitation experiments support a physical association of p110α with VEGFR2. Downstream, Akt-mediated FOXO1 phosphorylation in EC is regulated by p110α. The p110δ isoform contributes a minor amount of VEGF-stimulated Akt activation. However, we observe no effect of p110α or p110δ to regulate VEGF-stimulated eNOS activation via Akt-mediated phosphorylation on eNOS Ser1177, or NO-mediated vasodilation of the afferent arteriole ex vivo. VEGFR2-stimulated eNOS activation and NO production are inhibited by Compound C, an inhibitor of AMP-stimulated kinase, independent of PI3 kinase signaling. PI3 kinase-α/δ-mediated signaling downstream of VEGFR2 activation regulates Akt-dependent survival signals, but our data suggest it is not required to activate eNOS or to elicit NO production in glomerular EC.  相似文献   

3.
Aminoguanidine inhibits the development of retinopathy in diabetic animals, but the mechanism remains unclear. Inasmuch as aminoguanidine is a relatively selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), we have investigated the effects of hyperglycemia on the retinal nitric oxide (NO) pathway in the presence and absence of aminoguanidine. In vivo studies utilized retinas from experimentally diabetic rats treated or without aminoguanidine for 2 months, and in vitro studies used bovine retinal endothelial cells and a transformed retinal glial cell line (rMC-1) incubated in 5 mm and 25 mm glucose with and without aminoguanidine (100 microg/mL). NO was detected as nitrite and nitrate, and nitrotyrosine and iNOS were detected using immunochemical methods. Retinal homogenates from diabetic animals had greater than normal levels of NO and iNOS (p < 0.05), and nitrotyrosine was greater than normal, especially in one band immunoprecipitated from retinal homogenates. Oral aminoguanidine significantly inhibited all of these increases. Nitrotyrosine was detected immunohistochemically only in the retinal vasculature of non-diabetic and diabetic animals. Retinal endothelial and rMC-1 cells cultured in high glucose increased NO and NT, and aminoguanidine inhibited both increases in rMC-1 cells, but only NT in endothelial cells. Hyperglycemia increases NO production in retinal cells, and aminoguanidine can inhibit this abnormality. Inhibition of diabetic retinopathy by aminoguanidine might be mediated in part by inhibition of sequelae of NO production.  相似文献   

4.
Hyperoxia exposure induces capillary endothelial cell apoptosis in the developing retina, leading to vaso-obliteration followed by proliferative retinopathy. Previous in vivo studies have shown that endothelial nitric oxide synthase (NOS3) and peroxynitrite are important mediators of the vaso-obliteration. Now we have investigated the relationship between hyperoxia, NOS3, peroxynitrite, and endothelial cell apoptosis by in vitro experiments using bovine retinal endothelial cells (BREC). We found that BREC exposed to 40% oxygen (hyperoxia) for 48 h underwent apoptosis associated with activation of caspase-3 and cleavage of the caspase substrate poly(ADP-ribose) polymerase. Hyperoxia-induced apoptosis was associated with increased formation of nitric oxide, peroxynitrite, and superoxide anion and was blocked by treatment with uric acid, nitro-L-arginine methyl ester, or superoxide dismutase. Analyses of the phosphatidylinositol 3-kinase/Akt kinase survival pathway in cells directly treated with peroxynitrite revealed inhibition of VEGF- and basic FGF-induced activation of Akt kinase. These results suggest that hyperoxia-induced formation of peroxynitrite induces BREC apoptosis by crippling key survival pathways and that blocking peroxynitrite formation prevents apoptosis. These data may have important clinical implications for infants at risk of retinopathy of prematurity. oxygen-induced retinopathy; vaso-obliteration; superoxide; nitric oxide  相似文献   

5.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an important role in receptor tyrosine kinase-mediated signal transduction. We found here that laminar flow (shear stress = 12 dynes/cm2) rapidly stimulated Gab1 tyrosine phosphorylation in both bovine aortic endothelial cells and human umbilical vein endothelial cells, which correlated with activation of Akt and eNOS. Gab1 phosphorylation as well as activation of Akt and eNOS by flow was inhibited by the Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and VEGFR2 kinase inhibitors SU1498 and VTI, suggesting that flow-mediated Gab1 phosphorylation is Src kinase-dependent and VEGFR2-dependent. Tyrosine phosphorylation of Gab1 by flow was functionally important, because flow stimulated the association of Gab1 with the PI3K subunit p85 in a time-dependent manner. Furthermore, transfection of a Gab1 mutant lacking p85 binding sites inhibited flow-induced activation of Akt and eNOS. Finally, knockdown of endogenous Gab1 by small interference RNA abrogated flow activation of Akt and eNOS. These data demonstrate a critical role of Gab1 in flow-stimulated PI3K/Akt/eNOS signal pathway in endothelial cells.  相似文献   

6.
Increased levels of homocysteine (Hcy), recognized as hyperhomocysteinemia (HHcy), were associated with cardiovascular diseases. There was controversy regarding the detrimental versus cardio protective role of inducible nitric oxide synthase (iNOS) in ischemic heart disease. The aim of this study was to test the hypothesis that the Hcy generated nitrotyrosine by inducing the endothelial nitric oxide synthase, causing endothelial‐myocyte (E‐M) coupling. To differentiate the role of iNOS versus constitutive nitric oxide synthase (eNOS and nNOS) in Hcy‐mediated nitrotyrosine generation and matrix remodeling in cardiac dysfunction, left ventricular (LV) tissue was analyzed from cystathionine beta synthase (CBS) heterozygote knockout, iNOS homozygote knockout, CBS?/+/iNOS?/? double knockout, and wild‐type (WT) mice. The levels of nitrotyrosine, MMP‐2 and ‐9 (zymographic analysis), and fibrosis (by trichrome stain) were measured. The endothelial‐myocyte function was determined in cardiac rings. In CBS?/+ mice, homocysteine was elevated and in iNOS?/? mice, nitric oxide was significantly reduced. The nitrotyrosine and matrix metalloproteinase‐9 (MMP‐9) levels were elevated in double knockout and CBS?/+ as compared to WT mice. Although MMP‐2 levels were similar in CBS?/+, iNOS?/?, and CBS?/+/iNOS?/?, the levels were three‐ to fourfold higher than WT. The levels of collagen were similar in CBS?/+ and iNOS?/?, but they were threefold higher than WT. Interesting, the levels of collagen increased sixfold in double knockouts, compared to WT, suggesting synergism between high Hcy and lack of iNOS. Left ventricular hypertrophy was exaggerated in the iNOS?/? and double knockout, and mildly increased in the CBS?/+, compared to WT mice. The endothelial‐dependent relaxation was attenuated to the same extent in the CBS?/+ and iNOS?/?, compared to WT, but it was robustly blunted in double knockouts. The results concluded that homocysteine generated nitrotyrosine in the vicinity of endothelium, caused MMP activation and endothelium‐myocyte uncoupling. The generation of nitrotyrosine was independent of iNOS. J. Cell. Biochem. 106: 119–126, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Chronic hyperglycemia and activation of receptor for advanced glycation end products (RAGE) are known risk factors for microvascular disease development in diabetic retinopathy. Thioredoxin‐interacting protein (TXNIP), an endogenous inhibitor of antioxidant thioredoxin (TRX), plays a causative role in diabetes and its vascular complications. Herein we investigate whether HG and RAGE induce inflammation in rat retinal endothelial cells (EC) under diabetic conditions in culture through TXNIP activation and whether epigenetic mechanisms play a role in inflammatory gene expression. We show that RAGE activation by its ligand S100B or HG treatment of retinal EC induces the expression of TXNIP and inflammatory genes such as Cox2, VEGF‐A, and ICAM1. TXNIP silencing by siRNA impedes RAGE and HG effects while stable over‐expression of a cDNA for human TXNIP in EC elevates inflammation. p38 MAPK‐NF‐κB signaling pathway and histone H3 lysine (K) nine modifications are involved in TXNIP‐induced inflammation. Chromatin immunoprecipitation (ChIP) assays reveal that TXNIP over‐expression in EC abolishes H3K9 tri‐methylation, a marker for gene inactivation, and increases H3K9 acetylation, an indicator of gene induction, at proximal Cox2 promoter bearing the NF‐κB‐binding site. These findings have important implications toward understanding the molecular mechanisms of ocular inflammation and endothelial dysfunction in diabetic retinopathy. J. Cell. Physiol. 221: 262–272, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

8.
Opposing effects have been ascribed to nitric oxide (NO) on retinal microvascular survival. We investigated whether changes in the redox state may contribute to explain apparent conflicting actions of NO in a model of oxygen-induced retinal vasoobliteration. Retinal microvascular obliteration was induced by exposing 7-day-old rat pups (P7) for 2 or 5 days to 80% O(2). The redox state of the retina was assessed by measuring reduced glutathione and oxidative and nitrosative products malondialdehyde and nitrotyrosine. The role of NO on vasoobliteration was evaluated by treating animals with nitric oxide synthase (NOS) inhibitors (N-nitro-l-arginine; L-NA) and by determining NOS isoform expression and activity; the contribution of nitrosative stress was also determined in animals treated with the degradation catalyst of peroxynitrite FeTPPS or with the superoxide dismutase mimetic CuDIPS. eNOS, but not nNOS or iNOS, expression and activity were increased throughout the exposure to hyperoxia. These changes were associated with an early (2 days hyperoxia) decrease in reduced glutathione and increases in malondialdehyde and nitrotyrosine. CuDIPS, FeTPPS, and L-NA treatments for these 2 days of hyperoxia nearly abolished the vasoobliteration. In contrast, during 5 days exposure to hyperoxia when the redox state rebalanced, L-NA treatment aggravated the vasoobliteration. Interestingly, VEGFR-2 expression was respectively increased by NOS inhibition after short-term (2 days) exposure to hyperoxia and decreased during the longer hyperoxia exposure. Data disclose that the dual effects of NO on newborn retinal microvascular integrity in response to hyperoxia in vivo depend on the redox state and seem mediated at least in part by VEGFR-2.  相似文献   

9.
10.
The endothelial isoform of nitric-oxide synthase (eNOS), a key determinant of vascular homeostasis, is a calcium/calmodulin-dependent phosphoprotein regulated by diverse cell surface receptors. Vascular endothelial growth factor (VEGF) and sphingosine 1-phosphate (S1P) stimulate eNOS activity through Akt/phosphoinositide 3-kinase and calcium-dependent pathways. AMP-activated protein kinase (AMPK) also activates eNOS in endothelial cells; however, the molecular mechanisms linking agonist-mediated AMPK regulation with eNOS activation remain incompletely understood. We studied the role of AMPK in VEGF- and S1P-mediated eNOS activation and found that both agonists led to a striking increase in AMPK phosphorylation in pathways involving the calcium/calmodulin-dependent protein kinase kinase beta. Treatment with tyrosine kinase inhibitors or the phosphoinositide 3-kinase inhibitor wortmannin demonstrated differential effects of VEGF versus S1P. Small interfering RNA (siRNA)-mediated knockdown of AMPKalpha1or Akt1 impaired the stimulatory effects of both VEGF and S1P on eNOS activation. AMPKalpha1 knockdown impaired agonist-mediated Akt phosphorylation, whereas Akt1 knockdown did not affect AMPK activation, thus suggesting that AMPK lies upstream of Akt in the pathway leading from receptor activation to eNOS stimulation. Importantly, we found that siRNA-mediated knockdown of AMPKalpha1 abrogates agonist-mediated activation of the small GTPase Rac1. Conversely, siRNA-mediated knockdown of Rac1 decreased the agonist-mediated phosphorylation of AMPK substrates without affecting that of AMPK, implicating Rac1 as a molecular link between AMPK and Akt in agonist-mediated eNOS activation. Finally, siRNA-mediated knockdown of caveolin-1 significantly enhanced AMPK phosphorylation, suggesting that AMPK is negatively regulated by caveolin-1. Taken together, these results suggest that VEGF and S1P differentially regulate AMPK and establish a central role for an agonist-modulated AMPK --> Rac1 --> Akt axis in the control of eNOS in endothelial cells.  相似文献   

11.
Vascular endothelial growth factor (VEGF) plays a critical role in normal development as well as retinal vasculature disease. During retinal vascularization, VEGF is most strongly expressed by not yet vascularized retinal astrocytes, but also by retinal astrocytes within the developing vascular plexus, suggesting a role for retinal astrocyte-derived VEGF in angiogenesis and vessel network maturation. To test the role of astrocyte-derived VEGF, we used Cre-lox technology in mice to delete VEGF in retinal astrocytes during development. Surprisingly, this only had a minor impact on retinal vasculature development, with only small decreases in plexus spreading, endothelial cell proliferation and survival observed. In contrast, astrocyte VEGF deletion had more pronounced effects on hyperoxia-induced vaso-obliteration and led to the regression of smooth muscle cell-coated radial arteries and veins, which are usually resistant to the vessel-collapsing effects of hyperoxia. These results suggest that VEGF production from retinal astrocytes is relatively dispensable during development, but performs vessel stabilizing functions in the retinal vasculature and might be relevant for retinopathy of prematurity in humans.  相似文献   

12.
The opening of mitochondrial ATP-sensitive K+ (mitoK(ATP)) channels has a significant role in delayed ischemic preconditioning, and nitric oxide (NO) is a well-known trigger for its activation. However, the source of NO remains unknown. Phosphorylation of endothelial NO synthase (eNOS) increases NO production and reduces apoptosis through the Akt signaling pathway. To elucidate the Akt signaling pathway involved in the opening and antiapoptotic effect of mitoKATP channel during delayed pharmacological preconditioning, the mitoKATP channel opener diazoxide (DE, 7 microg/kg i.p.) alone or DE plus Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microg/kg i.v.), an inhibitor of NOS, or wortmannin (WTN, 15 microg/kg i.v.), an inhibitor of phosphatidylinositol 3'-kinase (PI3 kinase), was administered to wild-type (WT) or eNOS(-/-) mice during DE treatment. Twenty-four hours later, hearts were isolated and subjected to 40 min ischemia and 30 min reperfusion (I/R). The effect of DE and other interventions on hemodynamic, terminal dUTP nick-end labeling staining and biochemical changes during I/R was assessed in mouse hearts. Treatment with DE resulted in a 2.2-fold increase in phosphorylation of Akt and a significant increase in eNOS and inducible NOS (iNOS) proteins. Akt is upstream of NOS and the mitoKATP channel as simultaneous pretreatment of WTN with DE abolished phosphorylation of Akt, which was not affected by L-NAME and 5-hydroxydecanoate. In hearts treated with DE, cardiac function was significantly improved after I/R, and apoptosis was also significantly decreased. WTN abolished the antiapoptotic effect of DE. Similarly, S-methylisothiourea, a specific iNOS inhibitor, when given to eNOS(-/-) mice that were pretreated with DE completely abolished the beneficial effects of DE on reduction of apoptotic death. DE was partially effective in eNOS(-/-) mice against the ischemic injury. It is concluded that DE activates Akt through the PI3 kinase signaling pathway and iNOS and eNOS is downstream of Akt.  相似文献   

13.
Muscarinic acetylcholine receptors (mAchRs) are guanosine nucleotide-binding protein (G protein) coupled receptors that crosstalk with receptor tyrosine kinases (RTKs) to signal mitogenic pathways. In particular, mAchRs are known to couple with RTKs for several growth factors to activate the mammalian target of rapamycin (mTOR)/Akt pathway, a regulator of protein synthesis. The RTK for the vascular endothelial growth factor (VEGF), VEGFR2, can signal protein synthesis but whether it cooperates with mAchRs to mediate mTOR activation has not been demonstrated. Using serum starved SK-N-SH neuroblastoma cells, we show that the muscarinic receptor agonists carbachol and pilocarpine enhance the activation of the mTOR substrate p70 S6 Kinase (S6K) and its target ribosomal protein S6 (S6) in a VEGFR2 dependent manner. Treatments with carbachol increased VEGFR2 phosphorylation, suggesting that mAchRs stimulate VEGFR2 transactivation to enhance mTOR signaling. Inhibitor studies revealed that phosphatidylinositol 3 kinase resides upstream from S6K, S6 and Akt phosphorylation while protein kinase C (PKC) functions in an opposing fashion by positively regulating S6K and S6 phosphorylation and suppressing Akt activation. Treatments with the phosphatase inhibitors sodium orthovanadate and okadaic acid increase S6, Akt and to a lesser extent S6K phosphorylation, indicating that tyrosine and serine/threonine dephosphorylation also regulates their activity. However, okadaic acid elicited a far greater increase in phosphorylation, implicating phosphatase 2A as a critical determinant of their function. Finally, pilocarpine but not carbachol induced a time and dose dependent cell death that was associated with caspase activation and oxidative stress but independent of S6K and S6 activation through VEGFR2. Accordingly, our findings suggest that mAchRs crosstalk with VEGFR2 to enhance mTOR activity but signal divergent effects on survival through alternate mechanisms.  相似文献   

14.
Thioredoxin is an important reducing molecule in biological systems. Increasing CYP2E1 activity induces oxidative stress and cell toxicity. However, whether thioredoxin protects cells against CYP2E1-induced oxidative stress and toxicity is unknown. SiRNA were used to knockdown either cytosolic (TRX-1) or mitochondrial thioredoxin (TRX-2) in HepG2 cells expressing CYP2E1 (E47 cells) or without expressing CYP2E1 (C34 cells). Cell viability decreased 40-60% in E47 but not C34 cells with 80-90% knockdown of either TRX-1 or TRX-2. Depletion of either thioredoxin also potentiated the toxicity produced either by a glutathione synthesis inhibitor or by TNFα in E47 cells. Generation of reactive oxygen species and 4-HNE protein adducts increased in E47 but not C34 cells with either thioredoxin knockdown. GSH was decreased and adding GSH completely blocked E47 cell death induced by either thioredoxin knockdown. Lowering TRX-1 or TRX-2 in E47 cells caused an early activation of ASK-1, followed by phosphorylation of JNK1 after 48 h of siRNA treatment. A JNK inhibitor caused a partial recovery of E47 cell viability after thioredoxin knockdown. In conclusion, knockdown of TRX-1 or TRX-2 sensitizes cells to CYP2E1-induced oxidant stress partially via ASK-1 and JNK1 signaling pathways. Both TRX-1 and TRX-2 are important for defense against CYP2E1-induced oxidative stress.  相似文献   

15.
Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI. Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation, but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERK activation and PI3K/Akt/eNOS/NO signaling.  相似文献   

16.
Abstract

Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR‐family proteins consist of VEGFR‐1/Flt‐1, VEGFR‐2/KDR/Flk‐1, and VEGFR‐3/Flt‐4. Among these, VEGFR‐2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1–3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR‐specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR‐2 tyrosine kinase, ZM323881 (5‐[[7‐(benzyloxy) quinazolin‐4‐yl]amino]‐4‐fluoro‐2‐methylphenol), to explore the role of VEGFR‐2 in endothelial cell function. Consistent with its reported effects on VEGFR‐2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR‐2, but not of VEGFR‐1, epidermal growth factor receptor (EGFR), platelet‐derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR‐1 and VEGFR‐2, but not VEGFR‐3, in the absence or presence of ZM323881. Inhibition of VEGFR‐2 blocked activation of extracellular regulated‐kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR‐1‐specific ligand, placental growth factor (PlGF). Inhibition of VEGFR‐2 also perturbed VEGF‐induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor‐2 inhibition also reversed VEGF‐stimulated phosphorylation of CrkII and its Src homology 2 (SH2)‐binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR‐2 thus blocked all VEGF‐induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR‐2 is critical for VEGF signaling and/or that VEGFR‐2 may function in a heterodimer with VEGFR‐1 in human vascular endothelial cells.  相似文献   

17.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) elicit numerous biological responses including cell survival, growth, migration, and differentiation in endothelial cells mediated by the endothelial differentiation gene, a family of G-protein-coupled receptors, and fetal liver kinase-1/kinase-insert domain-containing receptor (Flk-1/KDR), one of VEGF receptors, respectively. Recently, it was reported that S1P or VEGF treatment of endothelial cells leads to phosphorylation at Ser-1179 in bovine endothelial nitric oxide synthase (eNOS), and this phosphorylation is critical for eNOS activation. S1P stimulation of eNOS phosphorylation was shown to involve G(i) protein, phosphoinositide 3-kinase, and Akt. VEGF also activates eNOS through Flk-1/KDR, phosphoinositide 3-kinase, and Akt, which suggested that S1P and VEGF may share upstream signaling mediators. We now report that S1P treatment of bovine aortic endothelial cells acutely increases the tyrosine phosphorylation of Flk-1/KDR, similar to VEGF treatment. S1P-mediated phosphorylation of Flk-1/KDR, Akt, and eNOS were all inhibited by VEGF receptor tyrosine kinase inhibitors and by antisense Flk-1/KDR oligonucleotides. Our study suggests that S1P activation of eNOS involves G(i), calcium, and Src family kinase-dependent transactivation of Flk-1/KDR. These data are the first to establish a critical role of Flk-1/KDR in S1P-stimulated eNOS phosphorylation and activation.  相似文献   

18.
Shi Y  Ren Y  Zhao L  Du C  Wang Y  Zhang Y  Li Y  Zhao S  Duan H 《FEBS letters》2011,585(12):1789-1795
Mesangial cell apoptosis contributes to the pathogenesis of diabetic nephropathy. Here we show that thioredoxin interacting protein (TXNIP) is involved in high glucose (HG)-induced mouse mesangial cell (MMC) apoptosis. HG induced activation of apoptosis signal regulating kinase-1 (ASK1) in a time-dependent manner in MMCs. Treatment with antioxidant, tempol, or knockdown of TXNIP in MMCs reduced HG-mediated apoptosis, expression of cleaved caspase-3, Bax/Bcl-2 ratio and activation of ASK1. These data suggest that knockdown of TXNIP prevented HG-induced cell apoptosis and activation of ASK1 may be via reduction of oxidative stress in MMCs.  相似文献   

19.
In a retinal ischemic ex vivo model, we have reported protective effects of somatostatin (SRIF) receptor 2 (sst(2) ). As an ischemic condition not only causes cell death but also induces a vascular response, we asked whether vascular endothelial growth factor (VEGF) is altered in this model and whether its expression, release or localization are affected by sst(2) activation. Ex vivo retinas of wild-type (WT) and sst(1) KO mice (which over-express sst(2) ) were incubated in ischemic conditions with SRIF, octreotide (OCT) or a VEGF trap. Ischemia in WT retinas caused increase of VEGF release and decrease of VEGF mRNA. Both effects were counteracted by SRIF or OCT. VEGF immunoreactivity was in retinal neurons and scarcely in vessels. Ischemia caused a significant shift of VEGF immunoreactivity from neurons to vessels. The increase of vascular VEGF was reduced in sst(1) KO retinas and in WT retinas treated with SRIF or OCT. VEGF trap also limited this increase, demonstrating that vascular VEGF was of extracellular origin. Together, the data show a VEGF response to ischemia, in which VEGF released by damaged neurons reaches the retinal capillaries. The activation of sst(2) protects neurons from ischemic damage, thereby limiting VEGF release and the VEGF response.  相似文献   

20.
Vascular Endothelial Growth Factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. We constructed and validated a computational model of VEGFR2 trafficking and signaling, to study the role of receptor trafficking kinetics in modulating ERK phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized and validated against four previously published in vitro experiments. Based on these parameters, model simulations demonstrated interesting behaviors that may be highly relevant to understanding VEGF signaling in endothelial cells. First, at moderate VEGF doses, VEGFR2 phosphorylation and ERK phosphorylation are related in a log-linear fashion, with a stable duration of ERK activation; but with higher VEGF stimulation, phosphoERK becomes saturated, and its duration increases. Second, a large endosomal fraction of VEGFR2 makes the ERK activation reaction network less sensitive to perturbations in VEGF dosage. Third, extracellular-matrix-bound VEGF binds and activates VEGFR2, but by internalizing at a slower rate, matrix-bound VEGF-induced intracellular ERK phosphorylation is predicted to be greater in magnitude and more sustained, in agreement with experimental evidence. Fourth, different endothelial cell types appear to have different trafficking rates, which result in different levels of endosomal receptor localization and different ERK response profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号