首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1.

Methods

The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins.

Results

Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification.

Conclusions

Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance.  相似文献   

2.

Background

The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal–membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure.

Methods

Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin–Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated.

Results

Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level.

Conclusions

We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these proteins having potential to modulate calcium oxalate crystallization will throw light on understanding and controlling urolithiasis in humans.  相似文献   

3.

Background

We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC.

Methods

Using immunohistochemistry, CD68+ macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months).

Results

The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (p = 0.02) and NM-MRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (p = 0.04) but less NM-iNOS (p = 0.002) and MRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS p = 0.003), and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001).

Conclusions

Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.  相似文献   

4.

Rationale

Ventilator-associated pneumonia (VAP) is a common complication in patients with acute lung injury (ALI) and can lead to increased morbidity and mortality. Identifying protein profiles specific to VAP in bronchoalveolar lavage fluid (BALF) may aid in earlier diagnosis, elucidate mechanisms of disease, and identify putative targets for therapeutic intervention.

Methods

BALF was obtained from 5 normal subjects and 30 ALI patients: 14 with VAP (VAP+) and 16 without VAP (VAP). Each sample underwent shotgun proteomic analysis based on tandem mass spectrometry. Differentially expressed proteins between the groups were identified using statistical methods based on spectral counting. Mechanisms of disease were explored using functional annotation and protein interaction network analysis. Supervised classification algorithms were implemented to discover a proteomic classifier for identifying critically ill patients with VAP.

Results

ALI patients had distinct BALF proteomic profiles compared to normal controls. Within the ALI group, we identified 76 differentially expressed proteins between VAP+ and VAP. Functional analysis of these proteins suggested activation of pro-inflammatory pathways during VAP. We identified and validated a limited proteomic signature that discriminated VAP+ from VAP patients comprised of three proteins: S100A8, lactotransferrin (LTF), and actinin 1 (ACTN1).

Conclusions

Combining proteomic with computational analyses is a powerful approach to study the BALF proteome during lung injury and development of VAP. This integrative methodology is a promising strategy to differentiate clinically relevant subsets of ALI patients, including those suffering from VAP.  相似文献   

5.

Background

A large number of human tumor-associated antigens that are recognized by CD8+ T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines.

Methodology/Principal Findings

Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02+ healthy donors and/or HLA-A*02+ cancer patients. The recognition of HLA-A*02+ SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1565–574 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1565–574-specific T cells recognized and killed HLA-A*02+ SATB1+ cancer cells in an HLA-I-restricted manner.

Conclusions/Significance

We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8+ T cells, which, in turn, recognizes and kills HLA-A*02+ SATB1+ tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.  相似文献   

6.

Background

Xenotransplantation is a promising approach to circumventing the current organ shortage. However, T-cell-dependent anti-xenoresponses are a major challenge to successful xenografts. Given the advantages of the use of CTLA4-Ig in the survival of allografts, the purpose of the study was to investigate the therapeutic potential of CTLA4-IgG4 modified immature dendritic cells (imDCs) in the prevention of islets xenograft rejection.

Methods

CTLA4-IgG4 was constructed by the fusion of the extracellular regions of porcine CTLA4 to human the hIgG4 Fc region. The imDCs were induced and cultured from porcine peripheral blood mononuclear cells (PBMC). The CTLA4-IgG4 modified imDCs were delivered via the portal vein to the liver of diabetic mice (insulin-dependent diabetes mellitus) before islet xenografting, and mCTLA4-Ig was administered intravenously after xenotransplantation.

Results

The xenograft survival of mice receiving unmodified imDCs was approximately 30 days. However, following administration of CTLA4-IgG4 modified imDCs before grafting and mCTLA4-Ig after grafting, xenografts survived for more than 100 days. Flow cytometric analysis showed that the CD4+CD25+Foxp3+ Treg population was increased in spleens. The efficacy of donor CTLA4-IgG4 modified imDCs correlated partially with the amplification of Tregs.

Conclusions

These results confirm that selective inhibition of the direct and indirect pathways of T-cell activation by donor CTLA4-IgG4 modified imDCs and receptor CTLA4-Ig is a highly effective strategy to promote survival of xenografts.  相似文献   

7.

Background

Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice.

Methods and Findings

Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice.

Conclusions

Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes.  相似文献   

8.
9.

Background

T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure.

Methods

The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production.

Results

CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control.

Conclusion

HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation.  相似文献   

10.

Objective

To determine the function and phenotype of CD8+ T-cells targeting consensus and autologous sequences of entire HIV-1 Nef protein.

Methods

Multiparameter flow cytometry-based analysis was used to evaluate the responses of two treatment naïve HIV-infected individuals, during primary and the chronic phases of infection.

Results

A greater breadth and magnitude of CD8 IFN-γ responses to autologous compared to clade-B consensus peptides was observed in both subjects. Cross recognition between autologous and consensus peptides decreased in both subjects during progression from primary to chronic infection. The frequencies of TEMRA and TEM CD8+ T-cells targeting autologous peptides were higher than those targeting consensus peptides and were more polyfunctional (IFN-γ+ Gr-B+ CD107a+).

Conclusions

Our data indicate superior sensitivity and specificity of autologous peptides. The functional and maturational aspects of “real” versus “cross-recognized” responses were also found to differ, highlighting the importance of a sequence-specific approach towards understanding HIV immune response.  相似文献   

11.

Rationale

With the advent of primary PCI (PPCI), reperfusion is achieved in almost all patients presenting with acute myocardial infarction. However, despite multiple trials, reperfusion injury has not been successfully dealt with so far. In mouse models, CD4+ T lymphocytes (T cells) have been shown to be crucial instigators of reperfusion injury.

Objective

Our goal was to investigate the role of CD4+ T cells during myocardial reperfusion following PPCI by developing a protocol for high-throughput multiplexed flow cytometric analysis and multivariate flow clustering.

Methods and Results

13-parameter immunophenotyping and hierarchical cluster analysis (HCA) identified a unique CD4+CD57+ T-cell population in PPCI patients that reflected acute proliferation in the CD4+ T-cell compartment. CD4+CCR7+ T cells were specifically depleted from peripheral blood during the first 30 min of myocardial reperfusion after PPCI, suggesting a potential role for the chemokine receptor CCR7 in T-cell redistribution to either peripheral tissues or migration to the infarcted heart during ischemia/reperfusion following PPCI.

Conclusions

High-throughput polychromatic flow cytometry and HCA are capable of objective, time and cost efficient assessment of the individual T-cell immune profile in different stages of coronary heart disease and have broad applications in clinical trials.  相似文献   

12.

Background

An incomplete understanding of bone forming cells during wound healing and ectopic calcification has led to a search for circulating cells that may fulfill this function. Previously, we showed that monoosteophils, a novel lineage of calcifying/bone-forming cells generated by treatment of monocytes with the natural peptide LL-37, are candidates. In this study, we have analyzed their gene expression profile and bone repair function.

Methods and Findings

Human monoosteophils can be distinguished from monocytes, macrophages and osteoclasts by their unique up-regulation of integrin α3 and down-regulation of CD14 and CD16. Monoosteophils express high mRNA and protein levels of SPP1 (osteopontin), GPNMB (osteoactivin), CHI3L1 (cartilage glycoprotein-39), CHIT1 (Chitinase 1), MMP-7, CCL22 and MAPK13 (p38MAPKδ). Monocytes from wild type, but not MAPK13 KO mice are also capable of monoosteophil differentiation, suggesting that MAPK13 regulates this process. When human monoosteophils were implanted in a freshly drilled hole in mid-diaphyseal femurs of NOD/SCID mice, significant bone repair required only 14 days compared to at least 24 days in control treated injuries.

Conclusion

Human derived monoosteophils, characterized as CD45+α3+α3β+CD34CD14BAP (bone alkaline phosphatase) cells, can function in an animal model of bone injury.  相似文献   

13.

Background

IL-22 and IL-17A are implicated in the pathogenesis of autoimmune diseases. However, the role of IL-22+ and IL-17A+ CD4+ T cells in the pathogenesis of Hashimoto’s thyroiditis (HT) is not fully understood. This study investigates serum IL-22 and IL-17A levels and determines the frequency of circulating IL-22+ CD4+ T cells in HT patients to understand their roles in the pathogenesis of HT.

Methods

The levels of serum IL-22, IL-17A and IFN-γ and the frequency of circulating IL-22+CD4+ and IL-17A+CD4+ T cells in 17 HT patients and 17 healthy controls (HC) were determined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The levels of serum free triiodothyronine (FT4), free thyroxine (FT3), thyroid stimulating hormone (TSH), anti-thyroid peroxidase (TPO) and anti-thyroglobulin antibodies (TgAb) by chemiluminescent enzyme immunoassay and radioimmunoassay.

Results

The percentages of circulating IL-22+CD4+ and IL-17+CD4+ T cells (p<0.0001, p<0.0001) and the levels of serum IL-22, IL-17A and IFN-γ (p<0.0001, p<0.0001, p = 0.0210) in the HT patients were significantly higher than that in the HC. The percentages of IL-22+CD4+ T cells were positively correlated with Th17 cells (r = 0.8815, p<0.0001) and IL-17A+IL-22+CD4+ T cells (r = 0.8914, p<0.0001), but were negatively correlated with Th1 cells (r = −0.6110, p<0.0092) in the HT patients. The percentages of Th22 cells, Th17 cells and IL-17A+IL-22+CD4+ T cells were negatively correlated with the levels of serum TSH in the HT patients (r = −0.8402, p<0.0001; r = −0.8589, p<0.0001; r = −0.8289 p<0.0001, respectively).

Conclusions

A higher frequency of circulating IL-22+CD4+ and IL-17A+CD4+ T cells may be associated with the development of HT in Chinese patients.  相似文献   

14.

Background

CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined.

Methods

First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD.

Results

We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets.

Conclusions

Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.  相似文献   

15.

Aim

To investigate the role of neurotensin (NTS) in hepatocellular carcinoma (HCC) sub- grouping and the clinical and pathological significance of activation of NTS/IL-8 pathway in HCC.

Methods

The genome-wide gene expression profiling were conducted in 10 pairs of cancer tissues and corresponding normal adjacent tissues samples using Affymetrix GeneChip® Human Genome U133 Plus 2.0 microarray to screen differentially expressing genes and enrich dysfunctional activated pathways among different HCC subgroups. The levels of NTS protein and multiple inflammation and epithelial mesenchymal transition (EMT) related proteins, including IL-8, VEGF, MMP9, CD68, E-Cadherin, β-Catenin and Vimentin were examined in 64 cases of paraffin-embedded HCC samples using immunohistochemistry (IHC) staining method. The clinical outcome and overall survival (OS) were compared.

Results

A subgroup of HCC characterized by up-regulated NTS expression was accompanied by up-regulated inflammatory responses and EMT. The direct interaction between NTS and IL-8 was identified by pathway enrichment analysis. Significantly increased IL-8 protein was confirmed in 90.91% of NTS+ HCC samples and significantly positively correlated to the levels of NTS protein in cancer tissues (P = 0.036), which implied activation of NTS/IL-8 pathway in HCC. The levels of VEGF and MMP9 correlated with co-expression of NTS and IL-8. Increased infiltration of CD68+ macrophages and more cancer cells displaying EMT features were found in NTS+IL-8+ samples. The co-expression of NTS and IL-8 in cancer significantly correlated with the clinical outcomes, as the mortality rate of NTS+IL-8+ HCC patients is 2.5-fold higher than the others after the surgery (P = 0.022). Accordingly, the OS of NTS+IL-8+ HCC patients significantly decreased who are under a higher hazard of death at an expected hazard ratio (HR) of 3.457.

Conclusion

Dysfunctional activation of the NTS/IL-8 pathway was detected in HCC which is associated with increased inflammatory response in microenvironment, enhanced EMT in cancer, and worse prognosis in HCC patients.  相似文献   

16.

Background

Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. MPs have different biological effects depending on the cell from they originate. Cystic fibrosis (CF) lung disease is characterized by massive neutrophil granulocyte influx in the airways, their activation and eventually apoptosis. We investigated on the presence and phenotype of MPs in the sputum, a rich non-invasive source of inflammation biomarkers, of acute and stable CF adult patients.

Methods

Spontaneous sputum, obtained from 21 CF patients (10 acute and 11 stable) and 7 patients with primary ciliary dyskinesia (PCD), was liquefied with Sputasol. MPs were counted, visualized by electron microscopy, and identified in the supernatants of treated sputum by cytofluorimetry and immunolabelling for leukocyte (CD11a), granulocyte (CD66b), and monocyte-macrophage (CD11b) antigens.

Results

Electron microscopy revealed that sputum MPs were in the 100-500 nm range and did not contain bacteria, confirming microbiological tests. CF sputa contained higher number of MPs in comparison with PCD sputa. Levels of CD11a+-and CD66b+-, but not CD11b+-MPs were significantly higher in CF than in PCD, without differences between acute and stable patients.

Conclusions

In summary, MPs are detectable in sputa obtained from CF patients and are predominantly of granulocyte origin. This novel isolation method for MPs from sputum opens a new opportunity for the study of lung pathology in CF.  相似文献   

17.

Aim

Iron deficiency is a common comorbidity in chronic heart failure (CHF) which may exacerbate CHF. The c-kit+ cardiac stem cells (CSCs) play a vital role in cardiac function repair. However, much is unknown regarding the role of iron deficiency in regulating c-kit+ CSCs function. In this study, we investigated whether iron deficiency regulates c-kit+ CSCs proliferation, migration, apoptosis, and differentiation in vitro.

Method

All c-kit+ CSCs were isolated from adult C57BL/6 mice. The c-kit+ CSCs were cultured with deferoxamine (DFO, an iron chelator), mimosine (MIM, another iron chelator), or a complex of DFO and iron (Fe(III)), respectively. Cell migration was assayed using a 48-well chamber system. Proliferation, cell cycle, and apoptosis of c-kit+ CSCs were analyzed with BrdU labeling, population doubling time assay, CCK-8 assay, and flow cytometry. Caspase-3 protein level and activity were examined with Western blotting and spectrophotometric detection. The changes in the expression of cardiac-specific proteins (GATA-4,TNI, and β-MHC) and cell cycle-related proteins (cyclin D1, RB, and pRB) were detected with Western blotting.

Result

DFO and MIM suppressed c-kit+ CSCs proliferation and differentiation. They also modulated cell cycle and cardiac-specific protein expression. Iron chelators down-regulated the expression and phosphorylation of cell cycle-related proteins. Iron reversed those suppressive effects of DFO. DFO and MIM didn’t affect c-kit+ CSCs migration and apoptosis.

Conclusion

Iron deficiency suppressed proliferation and differentiation of c-kit+ CSCs. This may partly explain how iron deficiency affects CHF prognosis.  相似文献   

18.

Background

The deficit of pancreatic islet β cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D.

Methodology/Principal Findings

Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4+CD62L+ Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet β-cell regeneration to increase β-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4+CD62L+ Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets.

Conclusions/Significance

These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes, providing a novel strategy for the treatment of type 1 diabetes as well as other autoimmune diseases.  相似文献   

19.

Aim

Thymic epithelial cells (TECs) are thought to play an essential role in T cell development and have been detected mainly in mice using lectin binding and antibodies to keratins. Our aim in the present study was to create a precise map of rat TECs using antibodies to putative markers and novel monoclonal antibodies (i.e., ED 18/19/21 and anti-CD205 antibodies) and compare it with a map from mouse counterparts and that of rat thymic dendritic cells.

Results

Rat TECs were subdivided on the basis of phenotype into three subsets; ED18+ED19+/−keratin 5 (K5)+K8+CD205+ class II MHC (MHCII)+ cortical TECs (cTECs), ED18+ED21K5K8+ Ulex europaeus lectin 1 (UEA-1)+CD205 medullary TECs (mTEC1s), and ED18+ED21+K5+K8dullUEA-1CD205 medullary TECs (mTEC2s). Thymic nurse cells were defined in cytosmears as an ED18+ED19+/−K5+K8+ subset of cTECs. mTEC1s preferentially expressed MHCII, claudin-3, claudin-4, and autoimmune regulator (AIRE). Use of ED18 and ED21 antibodies revealed three subsets of TECs in mice as well. We also detected two distinct TEC-free areas in the subcapsular cortex and in the medulla. Rat dendritic cells in the cortex were MHCII+CD103+ but negative for TEC markers, including CD205. Those in the medulla were MHCII+CD103+ and CD205+ cells were found only in the TEC-free area.

Conclusion

Both rats and mice have three TEC subsets with similar phenotypes that can be identified using known markers and new monoclonal antibodies. These findings will facilitate further analysis of TEC subsets and DCs and help to define their roles in thymic selection and in pathological states such as autoimmune disorders.  相似文献   

20.

Background

Asthmatic nasal polyps primarily exhibit eosinophilic infiltration. However, the identities of the immune cells that infiltrate non-asthmatic nasal polyps remain unclear. Thus, we thought to investigate the distribution of innate immune cells and its clinical relevance in non-asthmatic chronic rhinosinusitis (CRS) in Korea.

Methods

Tissues from uncinate process (UP) were obtained from controls (n = 18) and CRS without nasal polyps (CRSsNP, n = 45). Nasal polyps (NP) and UP were obtained from CRS with nasal polyps (CRSwNP, n = 56). The innate immune cells was evaluated by immunohistochemistry such as, eosinophil major basic protein (MBP), tryptase, CD68, CD163, CD11c, 2D7, human neutrophil elastase (HNE) and its distribution was analyzed according to clinical parameters.

Results

In comparisons between UP from each group, CRSwNP had a higher number of MPB+, CD68+, and CD11c+ cells relative to CRSsNP. Comparisons between UP and NP from CRSwNP indicated that NP have a higher infiltrate of MBP+, CD163+, CD11c+, 2D7+ and HNE+ cells, whereas fewer CD68+ cells were found in NP. In addition, MBP+ and CD11c+ cells were increased from UP of CRSsNP, to UP of CRSwNP, and to NP of CRSwNP. Moreover, in UP from CRSwNP, the number of MBP+ and CD11c+ cells positively correlated with CT scores. In the analysis of CRSwNP phenotype, allergic eosinophilic polyps had a higher number of MBP+, tryptase+, CD11c+, 2D7+ cells than others, whereas allergic non-eosinophilic polyps showed mainly infiltration of HNE+ and 2D7+ cells.

Conclusions

The infiltration of MBP+ and CD11c+ innate immune cells show a significant association with phenotype and disease extent of CRS and allergic status also may influences cellular phenotype in non-asthmatic CRSwNP in Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号