首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In Arabidopsis, the GH3-like gene family consists of 19 members, several of which have been shown to adenylate the plant hormones jasmonic acid, indole acetic acid and salicylic acid (SA). In some cases, this adenylation has been shown to catalyze hormone conjugation to amino acids. Here we report molecular characterization of the GH3-LIKE DEFENSE GENE 1 (GDG1), a member of the GH3-like gene family, and show that GDG1 is an important component of SA-mediated defense against the bacterial pathogen Pseudomonas syringae. Expression of GDG1 is induced earlier and to a higher level in response to avirulent pathogens compared to virulent pathogens. gdg1 null mutants are compromised in several pathogen defense responses, including activation of defense genes and resistance against virulent and avirulent bacterial pathogens. Accumulation of free and glucoside-conjugated SA (SAG) in response to pathogen infection is compromised in gdg1 mutants. All defense-related phenotypes of gdg1 can be rescued by external application of SA, suggesting that gdg1 mutants are defective in the SA-mediated defense pathway(s) and that GDG1 functions upstream of SA. Our results suggest that GDG1 contributes to both basal and resistance gene-mediated inducible defenses against P. syringae (and possibly other pathogens) by playing a critical role in regulating the levels of pathogen-inducible SA. GDG1 is allelic to the PBS3 (avrPphB susceptible) gene.  相似文献   

2.
3.
Warren RF  Merritt PM  Holub E  Innes RW 《Genetics》1999,152(1):401-412
The RPS5 disease resistance gene of Arabidopsis mediates recognition of Pseudomonas syringae strains that possess the avirulence gene avrPphB. By screening for loss of RPS5-specified resistance, we identified five pbs (avrPphB susceptible) mutants that represent three different genes. Mutations in PBS1 completely blocked RPS5-mediated resistance, but had little to no effect on resistance specified by other disease resistance genes, suggesting that PBS1 facilitates recognition of the avrPphB protein. The pbs2 mutation dramatically reduced resistance mediated by the RPS5 and RPM1 resistance genes, but had no detectable effect on resistance mediated by RPS4 and had an intermediate effect on RPS2-mediated resistance. The pbs2 mutation also had varying effects on resistance mediated by seven different RPP (recognition of Peronospora parasitica) genes. These data indicate that the PBS2 protein functions in a pathway that is important only to a subset of disease-resistance genes. The pbs3 mutation partially suppressed all four P. syringae-resistance genes (RPS5, RPM1, RPS2, and RPS4), and it had weak-to-intermediate effects on the RPP genes. In addition, the pbs3 mutant allowed higher bacterial growth in response to a virulent strain of P. syringae, indicating that the PBS3 gene product functions in a pathway involved in restricting the spread of both virulent and avirulent pathogens. The pbs mutations are recessive and have been mapped to chromosomes I (pbs2) and V (pbs1 and pbs3).  相似文献   

4.
Specific recognition of Pseudomonas syringae strains that express the avirulence gene avrPphB requires two genes in Arabidopsis, RPS5 and PBS1. Previous work has shown that RPS5 encodes a member of the nucleotide binding site-leucine rich repeat class of plant disease resistance genes. Here we report that PBS1 encodes a putative serine-threonine kinase. Southern blot analysis revealed that the pbs1-1 allele contained a deletion of the 3' end of the PBS1 open reading frame. DNA sequence analysis of the pbs1-2 allele showed it to be a missense mutation that caused a glycine to arginine substitution in the activation segment of PBS1, a region known to regulate substrate binding and catalytic activity in many protein kinases. The identity of PBS1 was confirmed using both transient transformation and stable transformation of mutant pbs1 plants. Comparison of the predicted PBS1 amino acid sequence with other plant protein kinases revealed that PBS1 belongs to a distinct subfamily of protein kinases that contains no other members of known function. The Pto kinase of tomato, which is required for specific resistance to P. syringae strains expressing avrPto, did not fall in the same subfamily as PBS1 and is only 42% identical in the kinase domain. These data suggest that PBS1 and Pto may fulfil different functions in the recognition of pathogen avirulence proteins. We discuss several possible models for the roles of PBS1 and RPS5 in AvrPphB recognition.  相似文献   

5.
Wang GF  Seabolt S  Hamdoun S  Ng G  Park J  Lu H 《Plant physiology》2011,156(3):1508-1519
The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.  相似文献   

6.
Cao H  Bowling SA  Gordon AS  Dong X 《The Plant cell》1994,6(11):1583-1592
Systemic acquired resistance (SAR) is a general defense response in plants that is characterized by the expression of pathogenesis-related (PR) genes. SAR can be induced after a hypersensitive response to an avirulent pathogen or by treatment with either salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA). To dissect the signal transduction pathway of SAR, we isolated an Arabidopsis mutant that lacks the expression of an SA-, INA-, and pathogen-responsive chimeric reporter gene composed of the 5[prime] untranslated region of an Arabidopsis PR gene, [beta]-1,3-glucanase (BGL2), and the coding region of [beta]-glucuronidase (GUS). This mutant, npr1 (nonexpresser of PR genes), carries a single recessive mutation that abolishes the SAR-responsive expression of other PR genes as well. While SA-, INA-, or avirulent pathogen-induced SAR protects wild-type plants from Pseudomonas syringae infection, the mutant cannot be protected by pretreatment with these inducers. The insensitivity of npr1 to SA, INA, and avirulent pathogens in SAR induction indicates that these inducers share a common signal transduction pathway. Moreover, in npr1, the localized expression of PR genes induced by a virulent Pseudomonas pathogen is disrupted, and the lesion formed is less confined. These results suggest a role for PR genes in preventing the proximal spread of pathogens in addition to their suggested role in SAR.  相似文献   

7.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   

8.
9.
We isolated a dominant gain-of-function Arabidopsis mutant, accelerated cell death 6 (acd6), with elevated defenses, patches of dead and enlarged cells, reduced stature, and increased resistance to Pseudomonas syringae. The acd6-conferred phenotypes are suppressed by removing a key signaling molecule, salicylic acid (SA), by using the nahG transgene, which encodes SA hydroxylase. This suppression includes phenotypes that are not induced by application of SA to wild-type plants, indicating that SA acts with a second signal to cause many acd6-conferred phenotypes. acd6-nahG plants show hyperactivation of all acd6-conferred phenotypes after treatment with a synthetic inducer of the SA pathway, benzo(1,2, 3)thiadiazole-7-carbothioic acid (BTH), suggesting that SA acts with and also modulates the levels and/or activity of the second defense signal. acd6 acts partially through a NONEXPRESSOR OF PR 1 (NPR1) gene-independent pathway that activates defenses and confers resistance to P. syringae. Surprisingly, BTH-treated acd6-nahG plants develop many tumor-like abnormal growths, indicating a possible role for SA in modulating cell growth.  相似文献   

10.
Zhang Z  Li Q  Li Z  Staswick PE  Wang M  Zhu Y  He Z 《Plant physiology》2007,145(2):450-464
Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on both indole-3-acetic acid (IAA) and SA. Here, we show that GH3.5 acts as a bifunctional modulator in both SA and auxin signaling during pathogen infection. Overexpression of the GH3.5 gene in an activation-tagged mutant gh3.5-1D led to elevated accumulation of SA and increased expression of PR-1 in local and systemic tissues in response to avirulent pathogens. In contrast, two T-DNA insertional mutations of GH3.5 partially compromised the systemic acquired resistance associated with diminished PR-1 expression in systemic tissues. The gh3.5-1D mutant also accumulated high levels of free IAA after pathogen infection and impaired different resistance-gene-mediated resistance, which was also observed in the GH3.6 activation-tagged mutant dfl1-D that impacted the auxin pathway, indicating an important role of GH3.5/GH3.6 in disease susceptibility. Furthermore, microarray analysis showed that the SA and auxin pathways were simultaneously augmented in gh3.5-1D after infection with an avirulent pathogen. The SA pathway was amplified by GH3.5 through inducing SA-responsive genes and basal defense components, whereas the auxin pathway was derepressed through up-regulating IAA biosynthesis and down-regulating auxin repressor genes. Taken together, our data reveal novel regulatory functions of GH3.5 in the plant-pathogen interaction.  相似文献   

11.
J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1998,10(4):557-569
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.  相似文献   

12.
We characterized the accumulation patterns of Arabidopsis thaliana proteins, two CuZnSODs, FeSOD, MnSOD, PR1, PR5, and GST1, in response to various pathogen-associated treatments. These treatments included inoculation with virulent and avirulent Pseudomonas syringae strains, spontaneous lesion formation in the lsd1 mutant, and treatment with the salicylic acid (SA) analogs INA (2,6-dichloroisonicotinic acid) and BTH (benzothiadiazole). The PR1, PR5, and GST1 proteins were inducible by all treatments tested, as expected from previous mRNA blot analysis. The two CuZnSOD proteins were induced by SA analogs and in conjunction with lsd1-mediated spreading cell death. Additionally, LSD1 is a part of a signaling pathway for the induction of the CuZnSOD proteins in response to SA but not in lsd1-mediated cell death. We suggest that the spreading lesion phenotype of lsd1 results from a lack of up-regulation of a CuZnSOD responsible for detoxification of accumulating superoxide before the reactive oxygen species can trigger a cell death cascade.  相似文献   

13.
Expression profiling of wild-type plants and mutants with defects in key components of the defense signaling network was used to model the Arabidopsis network 24 h after infection by Pseudomonas syringae pv. maculicola ES4326. Results using the Affymetrix ATH1 array revealed that expression levels of most pathogen-responsive genes were affected by mutations in coi1, ein2, npr1, pad4, or sid2. These five mutations defined a small number of different expression patterns displayed by the majority of pathogen-responsive genes. P. syringae pv. tomato strain DC3000 elicited a much weaker salicylic acid (SA) response than ES4326. Additional mutants were profiled using a custom array. Profiles of pbs3 and ndr1 revealed major effects of these mutations and allowed PBS3 and NDR1 to be placed between the EDS1/PAD4 node and the SA synthesis node in the defense network. Comparison of coi1, dde2, and jar1 profiles showed that many genes were affected by coi1 but very few were affected by dde2 or jar1. Profiles of coi1 plants infected with ES4326 were very similar to those of wild-type plants infected with bacteria unable to produce the phytotoxin coronatine, indicating that, essentially, all COI1-dependent gene expression changes in this system are caused by coronatine.  相似文献   

14.
Salicylic acid (SA) is an important regulator of plant resistance to biotrophic and hemi-biotrophic pathogens. The enhanced pseudomonas susceptibility 1 ( eps1 ) mutant in Arabidopsis thaliana is hypersusceptible to both virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae . Through positional cloning, the EPS1 gene was isolated and found to encode a novel member of the BAHD acyltransferase superfamily. Pathogen-induced accumulation of SA and expression of pathogenesis-related ( PR ) genes were compromised in the eps1 mutant. SA could induce PR1 gene expression and restore disease resistance in the eps1 mutant. These results suggest that EPS1 functions upstream of SA and may be involved directly in synthesis of a precursor or a regulatory molecule for SA biosynthesis. Mutations of EPS1 or other genes important for SA accumulation or signaling conferred enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola in the Nossen-0 background but had little effect in the Columbia-0 background. These results suggest that there is natural variation among Arabidopsis ecotypes with respect to the antagonistic cross-talk between defense signaling pathways against various types of microbial pathogens.  相似文献   

15.
Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.  相似文献   

16.
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.  相似文献   

17.
18.
J Shah  P Kachroo    D F Klessig 《The Plant cell》1999,11(2):191-206
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)- and benzothiadiazole (BTH)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1 for expression of the PR genes and disease resistance. The ssi1 mutation caused PR (PR-1, BGL2 [PR-2], and PR-5) genes to be constitutively expressed and restored resistance to an avirulent strain of Pseudomonas syringae pv tomato in npr1-5 (previously called sai1) mutant plants. In addition, ssi1 plants were small, spontaneously developed hypersensitive response-like lesions, accumulated elevated levels of SA, and constitutively expressed the antimicrobial defensin gene PDF1.2. The phenotypes of the ssi1 mutant are SA dependent. When SA accumulation was prevented in ssi1 npr1-5 plants by expressing the SA-degrading salicylate hydroxylase (nahG) gene, all of the phenotypes associated with the ssi1 mutation were suppressed. However, lesion formation and expression of the PR genes were restored in these plants by the application of BTH. Interestingly, expression of PDF1.2, which previously has been shown to be SA independent but jasmonic acid and ethylene dependent, was also suppressed in ssi1 npr1-5 plants by the nahG gene. Furthermore, exogenous application of BTH restored PDF1.2 expression in these plants. Our results suggest that SSI1 may function as a switch modulating cross-talk between the SA- and jasmonic acid/ethylene-mediated defense signal transduction pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号