首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

2.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

3.
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.  相似文献   

4.
Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrP(Sc); PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrP(C)) to PrP(Sc) and the subsequent conversion of PrP(C) to PrP(Sc). We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrP(C) and PrP(Sc). Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrP(Sc) state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrP(Sc) and interfered with the conversion of endogenous MoPrP(C). The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrP(Sc). Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrP(C) reduced the accumulation of PrP(Sc) after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrP(C) plays a key role in conversion after binding to MoPrP(Sc).  相似文献   

5.
A conformational conversion of the normal, protease- sensitive prion protein (PrP-sen or PrP(C)) to a protease-resistant form (PrP-res or PrP(Sc)) is commonly thought to be required in transmissible spongiform encephalopathies (TSEs). Endogenous sulfated glycosaminoglycans are associated with PrP-res deposits in vivo, suggesting that they may facilitate PrP-res formation. On the other hand, certain exogenous sulfated glycans can profoundly inhibit PrP-res accumulation and serve as prophylactic anti-TSE compounds in vivo. To investigate the seemingly paradoxical effects of sulfated glycans on PrP-res formation, we have assayed their direct effects on PrP conversion under physiologically compatible cell-free conditions. Heparan sulfate and pentosan polysulfate stimulated PrP-res formation. Conversion was stimulated further by increased temperature. Both elevated temperature and pentosan polysulfate promoted interspecies PrP conversion. Circular dichroism spectropolarimetry measurements showed that pentosan polysulfate induced a conformational change in PrP-sen that may potentiate its PrP-res-induced conversion. These results show that certain sulfated glycosaminoglycans can directly affect the PrP conversion reaction. Therefore, depending upon the circumstances, sulfated glycans may be either cofactors or inhibitors of this apparently pathogenic process.  相似文献   

6.
The prion protein (PrP) binds copper and under some conditions copper can facilitate its folding into a more protease resistant form. Hence, copper levels may influence the infectivity of the scrapie form of prion protein (PrPSc). To determine the feasibility of copper-targeted therapy for prion disease, we treated mice with a copper chelator, D-(-)-penicillamine (D-PEN), starting immediately following intraperitoneal scrapie inoculation. D-PEN delayed the onset of prion disease in the mice by about 11 days (p = 0.002), and reduced copper levels in brain by 29% (p < 0.01) and in blood by 22% (p = 0.03) compared with control animals. Levels of other metals were not significantly altered in the blood or brain. Modest correlation was observed between incubation period and levels of copper in brain (p = 0.08) or blood (p = 0.04), indicating that copper levels are only one of many factors that influence the rate of progression of prion disease. In vitro, copper dose-dependently enhanced the proteinase K resistance of the prion protein, and this effect was counteracted in a dose-dependent manner by co-incubation with D-PEN. Overall, these findings indicate that copper levels can influence the conformational state of PrP, thereby enhancing its infectivity, and this effect can be attenuated by chelator-based therapy.  相似文献   

7.
The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0) cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids.  相似文献   

8.
《朊病毒》2013,7(4):240-249
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure—independent of infectious prion conformation—to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-β, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer’s disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP’s neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson’s disease or tauopathy. Deletion of PrP in one of two Huntington’s disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington’s motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.  相似文献   

9.
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure—independent of infectious prion conformation—to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-β, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP''s neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson disease or tauopathy. Deletion of PrP in one of two Huntington disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.Key words: neurodegeneration, protein misfolding, PrP, home cage, stroke  相似文献   

10.
The cellular prion protein (PrPC) undergoes constitutive proteolytic cleavage between residues 111/112 to yield a soluble N-terminal fragment (N1) and a membrane-anchored C-terminal fragment (C1). The C1 fragment represents the major proteolytic fragment of PrPC in brain and several cell types. To explore the role of C1 in prion disease, we generated Tg(C1) transgenic mice expressing this fragment (PrP(Δ23-111)) in the presence and absence of endogenous PrP. In contrast to several other N-terminally deleted forms of PrP, the C1 fragment does not cause a spontaneous neurological disease in the absence of endogenous PrP. Tg(C1) mice inoculated with scrapie prions remain healthy and do not accumulate protease-resistant PrP, demonstrating that C1 is not a substrate for conversion to PrPSc (the disease-associated isoform). Interestingly, Tg(C1) mice co-expressing C1 along with wild-type PrP (either endogenous or encoded by a second transgene) become ill after scrapie inoculation, but with a dramatically delayed time course compared with mice lacking C1. In addition, accumulation of PrPSc was markedly slowed in these animals. Similar effects were produced by a shorter C-terminal fragment of PrP(Δ23-134). These results demonstrate that C1 acts as dominant-negative inhibitor of PrPSc formation and accumulation of neurotoxic forms of PrP. Thus, C1, a naturally occurring fragment of PrPC, might play a modulatory role during the course of prion diseases. In addition, enhancing production of C1, or exogenously administering this fragment, represents a potential therapeutic strategy for the treatment of prion diseases.  相似文献   

11.
The "protein only" hypothesis postulates that the infectious agent of prion diseases, PrP(Sc), is composed of the prion protein (PrP) converted into an amyloid-specific conformation. However, cell-free conversion of the full-length PrP into the amyloid conformation has not been achieved. In an effort to understand the mechanism of PrP(Sc) formation, we developed a cell-free conversion system using recombinant mouse full-length PrP with an intact disulfide bond (rPrP). We demonstrate that rPrP will convert into the beta-sheet-rich oligomeric form at highly acidic pH (<5.5) and at high concentrations, while at slightly acidic or neutral pH (>5.5) it assembles into the amyloid form. As judged from electron microscopy, the amyloid form had a ribbon-like assembly composed of two non-twisted filaments. In contrast to the formation of the beta-oligomer, the conversion to the amyloid occurred at concentrations close to physiological and displayed key features of an autocatalytic process. Moreover, using a shortened rPrP consisting of 106 residues (rPrP 106, deletions: Delta23-88 and Delta141-176), we showed that the in vitro conversion mimicked a transmission barrier observed in vivo. Furthermore, the amyloid form displayed a remarkable resistance to proteinase K (PK) and produced a PK-resistant core identical with that of PrP(Sc). Fourier transform infrared spectroscopy analyses showed that the beta-sheet-rich core of the amyloid form remained intact upon PK-digestion and accounted for the extremely high thermal stability. Electron and real-time fluorescent microscopy revealed that proteolytic digestion induces either aggregation of the amyloid ribbons into large clumps or further assembly into fibrils composed of several ribbons. Fibrils composed of ribbons were very fragile and had a tendency to fragment into short pieces. Remarkably, the amyloid form treated with PK preserved high seeding activity. Our work supports the protein only hypothesis of prion propagation and demonstrates that formation of the amyloid form that recapitulates key physical properties of PrP(Sc) can be achieved in vitro in the absence of cellular factors or a PrP(Sc) template.  相似文献   

12.
Soluble dimeric prion protein (PrP-Fc(2)) binds to the disease-associated prion protein PrP(Sc), and inhibits prion replication when expressed in transgenic mice. Prion inhibition is effective even if PrP-Fc(2) is expressed at low levels, suggesting that its affinity for PrP(Sc) is higher than that of monomeric PrP(C). Here, we model prion accumulation as an exponential replication cycle of prion elongation and breakage. The exponential growth rate corresponding to this cycle is reflected in the incubation period of the disease. We use a mathematical model to calculate the exponential growth rate, and fit the model to in vivo data on prion incubation times corresponding to different levels of PrP(C) and PrP-Fc(2). We find an excellent fit of the model to the data. Surprisingly, targeting of PrP(Sc) can be effective at concentrations of PrP-Fc(2) lower than that of PrP(C), even if PrP-Fc(2) and PrP(C) have the same affinity for PrP(Sc). The best fit of our model to data predicts that the replicative prion consists of PrP(Sc) oligomers with a mean size of four to 15 units.  相似文献   

13.
The prion protein (PrP) can adopt multiple membrane topologies, including a fully translocated form (SecPrP), two transmembrane forms (NtmPrP and CtmPrP), and a cytosolic form. It is important to understand the factors that influence production of these species, because two of them, CtmPrP and cytosolic PrP, have been proposed to be key neurotoxic intermediates in certain prion diseases. In this paper, we perform a mutational analysis of PrP synthesized using an in vitro translation system in order to further define sequence elements that influence the formation of CtmPrP. We find that substitution of charged residues in the hydrophobic core of the signal peptide increases synthesis of CtmPrP and also reduces the efficiency of translocation into microsomes. Combining these mutations with substitutions in the transmembrane domain causes the protein to be synthesized exclusively with the CtmPrP topology. Reducing the spacing between the signal peptide and the transmembrane domain also increases CtmPrP. In contrast, topology is not altered by mutations that prevent signal peptide cleavage or by deletion of the C-terminal signal for glycosylphosphatidylinositol anchor addition. Removal of the signal peptide completely blocks translocation. Taken together, our results are consistent with a model in which the signal peptide and transmembrane domain function in distinct ways as determinants of PrP topology. We also present characterization of an antibody that selectively recognizes CtmPrP and cytosolic PrP by virtue of their uncleaved signal peptides. By using this antibody, as well as the distinctive gel mobility of CtmPrP and cytosolic PrP, we show that the amounts of these two forms in cultured cells and rodent brain are not altered by infection with scrapie prions. We conclude that CtmPrP and cytosolic PrP are unlikely to be obligate neurotoxic intermediates in familial or infectiously acquired prion diseases.  相似文献   

14.
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.  相似文献   

15.
The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrPARQ [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrPARR [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrPARR and PrPARQ variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrPARR form was more toxic than the scrapie susceptible PrPARQ variant. Moreover, the α-helical conformation of PrPARR was less stable than that of PrPARQ and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrPARQ variant displays a higher propensity to form large aggregates than PrPARR. Interestingly, in the presence of small amounts of PrPARR, PrPARQ aggregability was reduced to levels similar to that of PrPARR. Thus, in contrast to PrPARR toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrPARQ that allows the formation of large amyloid fibrils.  相似文献   

16.
Overproduction and purification of the prion protein is a major concern for biological or biophysical analysis as are the structural specificities of this protein in relation to infectivity. We have developed a method for the effective cloning, overexpression in Escherichia coli and purification to homogeneity of Syrian golden hamster prion protein (SHaPrP(90-231)). A high level of overexpression, resulting in the formation of inclusion bodies, was obtained under the control of the T7-inducible promoter of the pET15b plasmid. The protein required denaturation, reduction and refolding steps to become soluble and attain its native conformation. Purification was carried out by differential centrifugation, gel filtration and reverse phase chromatography. An improved cysteine oxidation protocol using oxidized glutathione under denaturing conditions, resulted in the recovery of a higher yield of chromatographically pure protein. About 10 mg of PrP protein per liter of bacterial culture was obtained. The recombinant protein was identified by monoclonal antibodies and its integrity was confirmed by electrospray mass spectrometry (ES/MS), whereas correct folding was assessed by circular dichroism (CD) spectroscopy. This protein had the structural characteristics of PrP(C) and could be converted to an amyloid structure sharing biophysical and biochemical properties of the pathologic form (PrP(Sc)). The sensitivity of these two forms to high pressure was investigated. We demonstrate the potential of using pressure as a thermodynamic parameter to rescue trapped aggregated prion conformations into a soluble state, and to explore new conformational coordinates of the prion protein conformational landscape.  相似文献   

17.
A prion protein (PrP)-like protein, Doppel (Dpl) is a homologue of cellular PrP (PrPC). Immunoblotting revealed heterogeneous glycosylation patterns of Dpl and PrPC in several cell lines and tissues, including brain and testis. To investigate whether the glycosylation and modification of Dpl and PrPC could influence each other, PrP gene (Prnp)-deficient neuronal cells, transfected with Prnp and/or the Dpl gene (Prnd), were analyzed by deglycosylation with peptide N-glycosidase F. The modification of Dpl was not influenced by PrPC, whereas an N-terminally truncated fragment of PrPC was reduced by Dpl expression. These results indicated that Dpl was glycosylated in a cell type- and tissue-specific manner regardless of PrPC, while PrPC endoproteolysis was modulated by Dpl expression.  相似文献   

18.
Conversion of the normal membrane-bound prion protein (PrP-sen) to its pathological isoform (PrP-res) is a key event in the pathogenesis of transmissible spongiform encephalopathies. Although the subcellular sites of conversion are poorly characterized, several lines of evidence have suggested the involvement of membrane lipid rafts in the conversion process. Here we report that copper stimulates the endocytosis of PrP-sen via a caveolin-dependent pathway in both microglia and neuroblastoma cells. We show that the polyene antibiotic filipin both limits endocytosis of PrP-sen and dramatically reduces the amount of membrane-bound PrP-sen. This reduction results from a rapid and massive release of full matured PrP-sen into the culture medium. Finally, we demonstrate that filipin is a potent inhibitor of PrP-res formation into chronically infected neuroblastoma cells. Our results reinforce the role of rafts in PrP trafficking and raise the possibility that the release of PrP-sen from the plasma membrane decreases the amount of available substrate PrP-sen at the conversion sites.  相似文献   

19.
Genomic characterization of the human prion protein (PrP) gene locus   总被引:6,自引:0,他引:6  
Prion protein (PrP) is intimately linked with a class of neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). Employing bioinformatics and direct molecular analysis, we demonstrated that the human PrP gene (PRNP) locus, which is situated at Chromosome (Chr) position 20p12-ter, contains three genes within a 55-kb interval: PRNP; DOPPEL or PRND, located 20 kb 3? of PRNP; and a novel gene, designated PRNT, that maps 3 kb 3? to PRND and is transcribed to generate at least three alternatively spliced mRNAs. All three genes of this locus demonstrate low sequence homology, implying that, although they may be evolutionarily related, they are functionally distinct. Analysis of both adult and fetal human tissues confirmed the ubiquitous but variable expression profile of PRNP, with the highest levels observed in the CNS and testis. Contrastingly, although PRND shows a wide tissue expression pattern in fetal tissues, it is expressed exclusively in adult testis, whereas all three PRNT isoforms were detected only in adult testis, implying that PRND is developmentally regulated. An investigation of the regulatory mechanisms underlying this complex gene expression pattern from the PRNP locus should provide insight into the function of these genes and the possible involvement of the non-PrP proteins in the development of TSEs.  相似文献   

20.
The conversion of cellular prion protein (PrP(C)) to the disease-associated misfolded isoform (PrP(Sc)) is an essential process for prion replication. This structural conversion can be modelled in protein misfolding cyclic amplification (PMCA) reactions in which PrP(Sc) is inoculated into healthy hamster brain homogenate, followed by cycles of incubation and sonication. In serial transmission PMCA experiments it has recently been shown that the protease-resistant PrP obtained in vitro (PrPres) is generated by an autocatalytic mechanism. Here, serial transmission PMCA experiments were compared with serial transmission reactions lacking the sonication steps. We achieved approximately 200,000-fold PrPres amplification by PMCA. In contrast, although initial amplification was comparable to PMCA reactions, PrPres levels quickly dropped below detection limit when samples were not subjected to ultrasound. These results indicate that aggregate breakage is essential for efficient autocatalytic amplification of misfolded prion protein and suggest an important role of aggregate breakage in prion propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号