首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, 5 μmol·L-1 abscisic acid (ABA) and gibberellic acid (GA3) were used to study the effect of both growth regulators on the morphological parameters and pigment composition of Andrographispaniculata. The growth regulators were applied by means of foliar spray during morning hours. ABA treatment inhibited the growth of the stem and internodal length when compared with control, whereas GA3 treatment increased the plant height and internodal length. The total number of leaves per plant decreased in the ABA-treated plants, but GA3 treatment increased the total number of leaves when compared with the control. Both growth regulators (ABA and GA3) showed increased leaf area. ABA and GA3 treatments slightly decreased the total root growth at all the stages of growth. The growth regulator treatments increased the whole plant fresh and dry weight at all stages of growth. ABA enhanced the fresh and dry weight to a larger extent when compared with GA3. An increase in the total chlorophyll content was recorded in ABA and GA3 treatments. The chlorophyll-a, chlorophyll-b, and carote-noids were increased by ABA and GA3 treatments when compared with the control plants. The xanthophylls and anthocyanin content were increased with ABA and GA3 treatments in A. Paniculata plants.  相似文献   

2.
以1年生紫斑牡丹幼苗为试验材料,采用不同浓度(0、100、300、500 mg/L)赤霉素(GA_3)喷施叶片处理,通过透射电镜、扫描电镜、光学显微镜观察幼苗叶片解剖结构,光合仪测定幼苗光合参数并以酶联免疫吸附法测叶片内源激素含量,探究外源GA_3对紫斑牡丹幼苗叶片解剖结构、光合特性和内源激素水平的影响。结果表明:(1)低浓度GA_3处理的紫斑牡丹叶肉细胞增大,栅栏组织外层细胞中叶绿体数量增加,高浓度GA_3处理则与之相反;GA_3处理叶片的栅栏组织/海绵组织比值(P/S)、组织结构紧密度(CTR)均下降,而其组织结构疏松度(SR)增加;GA_3处理的幼苗叶片的叶肉细胞内各叶绿体大小显著大于对照,随着GA_3处理浓度增加,紫斑牡丹叶肉细胞内叶绿体的体积趋于增大,类囊体垛叠凝聚逐渐松散,叶绿体上淀粉颗粒在300 mg/L GA_3处理中较明显;叶片气孔长度、宽度、气孔器大小、气孔开度和气孔密度随着GA_3浓度升高先升高后下降,同时叶片上表皮角质层厚度随GA_3浓度的升高而增加。(2)紫斑牡丹叶片净光合速率(P_n)、气孔导度(Cond)、蒸腾速率(T_r)、水分利用率(WUE)在100和300 mg/L GA_3处理下大都显著高于对照,且300 mg/L GA_3处理显著高于其余处理,而其在500 mg/L GA_3处理下显著低于对照。(3)紫斑牡丹叶片脱落酸(ABA)和吲哚乙酸(IAA)含量均在500 mg/L GA_3下显著高于对照,而在其余浓度处理下不同程度低于对照,叶片内源玉米素核苷(ZR)和GA_3含量均在300 mg/L GA_3处理下显著高于其余处理和对照,而其余处理相比对照均无显著变化;叶片的ZR/ABA、ZR/IAA、ZR/GA_3和(IAA+GA_3+ZR)/ABA比值都在300 mg/L GA_3处理下显著高于其他处理,叶片的IAA/ABA和ABA/GA_3比值均在500 mg/L GA_3处理下显著高于其他处理。研究发现,适宜浓度外源GA_3处理,能显著提高紫斑牡丹幼苗叶片光合速率、水分利用效率及蒸腾速率,调节植物体内源激素的含量及平衡,从而使叶片能合成较多有机物,促进幼苗生长。  相似文献   

3.
该研究采用ISSR分子标记,对黄枝油杉7个自然种群的遗传多样性进行了分析。结果表明:用12条ISSR引物对218个黄枝油杉个体进行扩增,共扩增出125个位点。在物种水平上,多态性位点百分数( PPL)为100.00%,Shannon信息多样性指数( I)为0.4177,Nei’ s基因多样性指数( H)为0.2666;在种群水平上,多态性位点百分数(PPL)在71.20%~92.00%之间,平均值为80.69%,Shannon信息多样性指数(I)在0.3273~0.3886之间,平均值为0.3548,Nei’ s基因多样性指数( H)在0.2139~0.2478之间,平均值为0.2291。这说明黄枝油杉在物种水平和种群水平上均显示出较高的遗传多样性。 Nei’ s遗传多样性分析( Gst=0.1433)和AMOVA分析(Φst=17.91%)表明,黄枝油杉的遗传变异主要存在于种群内,种群间的遗传分化程度较低,种群间保持一定的基因交流( Nm=2.9890>1)。 Mantel分析显示,黄枝油杉种群间的遗传距离和地理距离之间不存在显著的相关关系( r=0.4567, P=0.0610>0.05)。  相似文献   

4.
The experiments were performed to check the effects of exogenous ABA and gibberellin on photosynthetic apparatus and leaf resistance to freezing. In the experiment, two cultivars (winter and spring) of oilseed rape were used in the experiment. Discs, cut out from leaves of cold acclimated plants grown at 12 and 20 °C at similar PPFD levels, were immersed for 72 hours in growth regulator solutions. Some of discs were additionally subjected to high radiation. Independently on cultivar studied, the effects of growth regulator treatments were significant only in leaves developed at 20 °C. ABA treatment increased frost resistance, promoted photosynthetic activity measured in cold and inhibited expansion of leaf-disc area, whereas GA3 evoked opposite effects. The treatment with growth regulators particularly affected the resistance of photosynthetic apparatus to high light. In this case ABA treatment decreased, whereas GA3 increased photoinhibition of PSII. The outcomes may suggest that in the ABA-treated plants PSII is better protected against photoinduced inactivation both by the increase in effectiveness of photosynthetic dark reactions at high light/low temperature conditions, increased energy dissipation in xantophyll cycle and enhanced accumulation of anthocyanins. GA3 treatment may affect the resistance to photoinhibition directly via decrease in anthocyanins contents and indirectly through increase of elongation growth rate in the tissue.  相似文献   

5.
The effect of different plant growth regulators (PGR) and elicitor treatments on the alkaloid profile variation of Catharanthus roseus was investigated in the present study. The PGR used were paclobutrazol (PBZ), gibberellic acid (GA3) and Pseudomonas fluorescens elicitors (PF Elicitors). The estimated alkaloids were ajmalicine, catharanthine, tabersonine, serpentine and vindoline. In roots, the ajmalicine content increased significantly under all the treatments on all sampling days. In roots, the catharanthine contents increased with the age in control and growth regulator treatments, but the increase was not prominent and significant in PGR treatments when compared to controls. The serpentine contents of the plant increased with PGR treatments, but the increase was more prominent in PBZ treatments when compared to other treatments. The increase was in the order PBZ > PF Elicitors > GA3. C. roseus never showed any significant increase in tabersonine contents in the roots under GA3 treatments, but it increased significantly under PBZ and PF Elicitors when compared to control plants. The root vindoline contents increased with PBZ and PF Elicitors treatments but the decreased under GA3 treatments when compared to control plants. Our results have good significance, as these increases the secondary metabolites of this traditional medicinal plant.  相似文献   

6.
The enhancement of internodal elongation in floating or deepwater rice (Oryza sativa L. cv. Habiganj Aman II) by treatment with ethylene or gibberellic acid (GA3) at high relative humidity (RH) is inhibited by abscisic acid (ABA). Here, we examined the interactive effects of ethylene, gibberellin (GA) and ABA at low RH on internodal elongation of deepwater rice stem segments. Although ethylene alone hardly promoted internodal elongation of stem sections at 30% RH, it enhanced the internodal elongation induced by GA3. Application of ABA alone to stem segments had no effect on internodal elongation. However, in the presence of ethylene and GA3 at 30% RH, ABA further promoted internodal elongation. This promotive effect of ABA was not found in the internodes of stem segments treated either with ethylene or with GA3 at 30% RH or in the internodes of stem segments treated with ethylene and/or GA3 at 100% RH.  相似文献   

7.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

8.
The effect of external applications of gibberellins (GA3) and abscisic acid (ABA) on the growth, carbohydrate content, and net photosynthesis of heavy metal-stressed rice plants (Oryza sativa cv. Bahía) was investigated. Treatment with cadmium (0.1 mm) and nickel (0.5 mm) inhibited rice growth and stimulated carbohydrate accumulation, especially in seeds from which seedlings were developing, stems, and first leaves. The addition of GA3 (14 m) to the rice culture solution together with Cd or Ni partially reversed the effects of heavy metals, stimulating growth as well as mobilization of carbohydrate reserves in seeds from which seedlings had developed. GA3 increased the sugar content in roots and second and third leaves and also modified the carbohydrate distribution pattern compared with heavy metal-treated plants. In contrast to GA3, ABA (19 m) supplied to rice cultures potentiated the effect of heavy metals, inhibiting the growth of young leaves and the translocation of storage products from source to sink organs. In addition, sugars were accumulated in roots and second leaf but not in the third leaf, the extension in length of which was also inhibited by the treatment. Net photosynthesis rates recovered transitorily in Cd-treated plants after the addition of hormones. The possible relationship between growth and carbohydrate distribution, as well as the involvement of hormones, in the response of plant to heavy metal stress is discussed.Abbreviations 5DT 5 days after treatment - 10DT 10 days after treatment - ABA abscisic acid - GA3 gibberellic acid - TMC total metabolizable carbohydrates  相似文献   

9.
Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot‐grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre‐veraison, full veraison and post‐veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA‐treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build‐up of non‐structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.  相似文献   

10.
The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse‐grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well‐watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs) and leaf water potential (Ψleaf) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X‐ABA]leaf) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs, but [X‐ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA‐induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.  相似文献   

11.
The effects of water stress, abscisic acid (ABA), and gibberellic acid (GA3) on flower production and differentiation by Collomia grandiflora were investigated. An untreated plant typically produced both small, closed cleistogamous (CL) and large, open chasmogamous (CH) flowers. The larger corolla of CH flowers was due to a greater cell number and size. When plants were water-stressed or sprayed with ABA, both the percentage of CH flowers and the total number of flowers were reduced significantly. The corolla dimensions and epidermal cell numbers and sizes of CL flowers produced by water-stressed and ABA-sprayed plants did not differ from those of CL flowers produced by control plants. Application of GA3 to both well-watered and water-stressed plants significantly increased the percentage of CH flowers formed compared to well-watered controls. In the absence of GA3, water-stressed plants produced almost entirely CL flowers. GA3-sprayed plants produced CH flowers whose corolla dimensions were intermediate between those of CL and CH flowers formed by control plants. Epidermal cells of these intermediate corollas were reduced only in number and not in size when compared to control CH flowers. Endogenous levels of ABA and gibberellins may control the type of flower produced by C. grandiflora and may mediate some of the observable effects of water stress on flowering.  相似文献   

12.
S. T. C. Wright 《Planta》1980,148(4):381-388
Abscisic acid (ABA) inhibits the production of ethylene induced by water stress in excised wheat leaves and counteracts the stimulatory effect of 6-benzyladenine (BA) on this process. The stimulatory effect of BA and the inhibitory effect of ABA were equally pronounced whether external or endogenous ethylene levels were determined. When leaves were sprayed or floated on solutions of BA, indole-3-acetic acid (IAA), gibberellic acid (GA3), or ABA, the relative activities of these growth regulators on stress-induced ethylene at 10-4 mol l-1 were BA>IAA >GA3>controls>ABA. In non-stressed leaves, however, where the levels of ethylene produced were 2–20 times smaller, the relative activities were IAA >BA>GA3>controls>ABA. The effects of BA and ABA spray treatment on water stress induced ethylene were closely similar whether the solutions were applied 2 or 18 h prior to the initiation of water stress. The relationships between the levels of endogenous growth regulators in the plant and ethylene release induced by water stress are discussed.Abbreviations BA 6-benzyladenine - IAA indole-3-acetic acid - GA3 gibberellic acid - ABA abscisic acid - GLC gas-liquid chromatography - leaf leaf water potential  相似文献   

13.
The plant growth regulators, gibberellic acid (GA3), ethephon and chlormequat chloride (CCC) were sprayed on young lettuce, cauliflower and bean (Phaseolus vulgaris) plants, which had either been given or not been given a mechanically-induced stress (MIS) treatment. MIS was applied by brushing the plants with paper for 1.5 minutes each day. GA3 increased extension growth of bean and leaf length of lettuce in unbrushed plants as much as in brushed ones. CCC and ethephon were less effective at reducing the height of brushed bean plants compared to unbrushed ones. The effects of CCC on the growth of cauliflower and lettuce plants was not influenced by brushing, whereas unbrushed plants responded more readily to ethephon than did brushed ones. The effects of CCC on growth were generally similar to those of MIS whereas the effects of ethephon were in many ways different to MIS.The results are discussed in relation to the use of PGR and MIS treatments for modifying plant growth.  相似文献   

14.
Effect of growth regulators and role of roots in sex expression in spinach   总被引:2,自引:0,他引:2  
When 7-d-old plantlets of spinach (Spinacia oleracea L.) were immersed with their roots for 24 h in 25 mg/l gibberellic acid (GA3), or 15 mg/l 6-benzylaminopurine (6-BAP), or 15 mg/l indole-3-acetic acid (IAA), or 10 mg/l abscisic acid (ABA) and subsequently grown on long (18-h) days, the ratio of plants with male and female flowers, which in the controls was almost 1:1 (48 and 52%, respectively), was greatly altered. The treatments with 6-BAP, IAA and ABA raised the percentage of female plants to 88, 76 and 71%, respectively; the GA3 treatment increased the percent of male plants to 79%. When young, vegetative spinach plants (3 visible leaves) grown in 18-h days were cut a the root neck, and the shoots grown with their bases in nutrient solution, with adventitious roots either being allowed to develop or being systematically removed, 85% of the plants without roots became males, 85% of those with roots became females. But if the cut shoots were first, for 28 h, placed in a 15-mg/l 6-BAP solution and then grown in the absence of roots, the percent of female plants was restored to 84. These results fully agree with those obtained previously with hemp, namely, that plant growth regulators exert a regulating effect on the sex expression of dioecious plants when applied through the roots in early stages of development; that the root system plays an important role in determining the sex of these plants, that this role of the roots is associated with the synthesis of cytokinins in them. Dioecious short- and long-day plants do not differ in these respects.  相似文献   

15.
Liu Y  Zhong Z C 《农业工程》2009,29(4):244-248
The impact of UV-B radiation on endogenous hormones in plants has recently drawn attention from researchers. The mechanism for reduced stem elongation by UV-B might be due to changes in the phytohormone levels, especially IAA, which plays a role in stem elongation. In this study, effects of UV-B radiation on Trichosanthes kirilowii Maxim (T. kirilowii) seedlings in greenhouse-grown plants were investigated. The results indicated that: (1) In comparison to controls, exposure to 0.029 Jm?2 s?1. UV-B radiation led to accumulation of endogenous abscisic acid (ABA) and zeatinriboside (ZR) in the plant contents, and decreased contents of endogenous indole-3-acetic acid (IAA) and gibberellic acid (GA1/3). Exposure to UV-B radiation reduced the height and leaf area of plants. As a result, total biomass (plant dry weight) was lower. (2) In comparison to controls, addition of 2 mg l?1 α-naphthaleneacetic acid (α-NAA) slightly increased the contents of IAA, GA1/3 and ZR, and decreased the content of ABA in leaves. This addition of α-NAA significantly increased plant height and leaf area, but only slightly increased total biomass. (3) Addition of α-NAA to UV-B-exposed plants: increased the content of endogenous IAA, GA1/3 and ZR; decreased accumulation of endogenous ABA; and increased plant height and leaf area in comparison to plants that only were exposed to UV-B. Moreover, total biomass increased slightly. This suggests that addition of α-NAA may compensate to a certain extent for the lack of IAA resulting from UV-B radiation; it also increases the content of GA1/3 and ZR, decreases the accumulation of ABA, and promotes the growth of plants.  相似文献   

16.
Applications of ABA to the mature form of Hedera helix stabilize its morphological characteristics and prevent GA3 induced reversion to the juvenile form. Plants treated with GA3 reverted to the juvenile form whereas those supplied with ABA in conjunction with GA3 remained mature. When mature plants were treated with 5 nanomoles of GA3 and 5 micromoles of ABA, reversion did not occur, but when the GA3 dose was raised to 25 nanomoles with the same level of ABA, reversion did occur. This implies that the relative amounts of GA3 and ABA applied are important in controlling growth form and not the absolute levels of these hormones. Applications of growth retardants (Chlormequat, Ancymidol, and SADH) stabilize the mature form by preventing spontaneous reversions induced under low light intensity. These two lines of evidence support the hypothesis that the mature morphological form can be stabilized by regulating the effective level of gibberellins in the plant and this can be accomplished by inhibition of gibberellin action or gibberellin biosynthesis.  相似文献   

17.
Barley plants (Hordeum vulgare L.) received foliar applications of 10–4 M gibberellic acid (GA3) and Kinetin (KN) individually and in combination at one or more of three growth stages: flag leaf appearance (I), ear emergence (II), and the first stage of senescence initiation in the flag leaf (III). Both plant growth regulators (PGR) hastened onset of senescence when sprayed at Stage I and/or Stage II. Treatment at Stage III, either alone or in combination with treatments at the other stages, tended to postpone senescence. Yield components also showed stage-dependent response: Stage I treatment increased the formation of total and bearing tillers, and Stage III treatment improved grain number and weight. However, while GA3 proved more effective than KN, the two together acted antagonistically.  相似文献   

18.
Salinity had generally little influence on the water content of different parts of cowpea(Vigna sinensis L.), calabrese(Brassica oleracea L. var.botrylis) and red radish(Raphanus salivus L.) plants. Salinity showed a promotive effect on the growth of cowpea, while in calabrese the effect was either promotive or depressive depending upon the concentration of the NaCl, and in red radish plants salinity progressively suppressed growth. Total nitrogen, phosphorus, potassium and sodium contents of cowpea leaves were not affected by salinity treatments, while in calabrese and red radish leaves the contents of N, P and K were generally decreased as the salinity level increased. Gibberellin (GA3) applied to salt-treated plants had either a stimulatory or inhibitory effect on the growth, water content and contents of N, P, K and Na in the leaves depending upon the plant type, the concentration of GA3 and level of salinity.  相似文献   

19.
Gibberellin-growth retardant interactions on the vegetative growth and flowering of the vine Clerodendrum thomsoniae Balf. were studied using both exogenous treatments and biologically testing the acid fraction attained from the plant extract. The growth retardant, ancymidol, greatly retarded stem elongation and markedly increased flowering under inductive environments. Gibberellin A3 (GA3) application to the shoot tip stimulated vine growth, prevented flowering under inductive environments, and completely overcame ancymidol-induced effects. In contrast to GA3, treatment with GA7 had little effect on vegetative growth but increased flowering under inductive environments. The elevated activity of gibberellin-like compounds, as determined by bioassay, were similar except for a marked increase in levels in ancymidol-treated plants grown under inductive environmental conditions. Microscopic examination of the stem tip indicated that the action of the growth regulators involved the induction of floral buds. Thus, in Clerodendrum, ancymidol appears to stimulate an unknown gibberellin(s) and simultaneously acts antagonistically with GA3.  相似文献   

20.
Hayat  S.  Ahmad  A.  Mobin  M.  Fariduddin  Q.  Azam  Z.M. 《Photosynthetica》2001,39(1):111-114
The leaves of 30-d-old plants of Brassica juncea Czern & Coss cv. Varuna were sprayed with 10–6 M aqueous solutions of indole-3-yl-acetic acid (IAA), gibberellic acid (GA3), kinetin (KIN), and abscisic acid (ABA) or 10–8 M of 28-homobrassinolide (HBR). All the phytohormones, except ABA, improved the vegetative growth and seed yield at harvest, compared with those sprayed with deionised water (control). HBR was most prominent in its effect, generating 32, 30, 36, 70, 25, and 29 % higher values for dry mass, chlorophyll content, carbonic anhydrase (E.C. 4.2.1.1) activity, and net photosynthetic rate in 60-d-old plants, pods per plant, and seed yield at harvest, over the control, respectively. The order of response to various hormones was HBR > GA3 > IAA > KIN > control > ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号