首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

2.
《Hormones and behavior》2008,53(5):561-570
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

3.
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  相似文献   

4.
Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.  相似文献   

5.
ABSTRACT

Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.  相似文献   

6.
Living in a medium that can limit visual information but readily exposes the olfactory organ to hormonal compounds released by conspecifics, fish throughout their long evolutionary history have had both clear cause and ample opportunity to evolve olfactory responsiveness to these potentially important chemical cues (hormonal pheromones). Indeed, water-borne steroids, prostaglandins, and their metabolites are detected with great sensitivity and specificity by the olfactory organs of diverse fishes, and exert important effects on reproductive behavior and physiology in major taxa including carps (goldfish), catfishes, salmon, and gobies. Best understood are goldfish, where periovulatory females sequentially release a preovulatory steroid pheromone and a postovulatory prostaglandin pheromone that dramatically affect male behavior, physiology, and reproductive fitness. Although the diverse array of hormonal products released and detected by fish indicates clear potential for species-specific hormonal pheromones, olfactory recordings showing similar patterns of hormone detection among closely related species provide little evidence of selection for specificity. By demonstrating that the actions of sex hormones and related products are not limited to reproductive synchrony within the individual, the relatively recent discovery of hormonal pheromones has considerably expanded our understanding of fish reproductive function, while providing valuable model systems for future study of olfactory function and pheromone evolution.  相似文献   

7.
Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller''s hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female''s endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory ‘signatures’ of pregnancy may help guide social interactions, potentially promoting mother–infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation.  相似文献   

8.
Animals use their chemosensory systems to detect and discriminate among chemical cues in the environment. Remarkable progress has recently been made in our knowledge of the molecular and cellular basis of chemosensory perception in insects, based largely on studies in Drosophila. This progress has been possible due to the identification of gene families for olfactory and gustatory receptors, the use of electro-physiological recording techniques on sensory neurons, the multitude of genetic manipulations that are available in this species, and insights from several insect model systems. Recent studies show that the superfamily of chemoreceptor proteins represent the essential elements in chemosensory coding, endowing chemosensory neurons with their abilities to respond to specific sets of odorants, tastants or pheromones. Investigating how insects detect chemicals in their environment can show us how receptor protein structures relate to ligand binding, how nervous systems process complex information, and how chemosensory systems and genes evolve.  相似文献   

9.
The “noses” of diverse taxa are organized into different subsystems whose functions are often not well understood. The “nose” of decapod crustaceans is organized into two parallel pathways that originate in different populations of antennular sensilla and project to specific neuropils in the brain—the aesthetasc/olfactory lobe pathway and the non-aesthetasc/lateral antennular neuropil pathway. In this study, we investigated the role of these pathways in mediating shelter selection of Caribbean spiny lobsters, Panulirus argus, in response to conspecific urine signals. We compared the behavior of ablated animals and intact controls. Our results show that control and non-aesthetasc ablated lobsters have a significant overall preference for shelters emanating urine over control shelters. Thus the non-aesthetasc pathway does not play a critical role in shelter selection. In contrast, spiny lobsters with aesthetascs ablated did not show a preference for either shelter, suggesting that the aesthetasc/olfactory pathway is important for processing social odors. Our results show a difference in the function of these dual chemosensory pathways in responding to social cues, with the aesthetasc/olfactory lobe pathway playing a major role. We discuss our results in the context of why the noses of many animals contain multiple parallel chemosensory systems.  相似文献   

10.
Olfactory networks, comprised of sensory neurons and interneurons, detect and process changes in the chemical environment to drive animal behavior. Recent studies combining genetics with behavioral analyses and imaging in worms, flies and mice have revealed new insights into the mechanisms of olfaction. In this discussion, we focus on three interesting findings. First, sensory neuron responses to odor are modulated by neuropeptides. This modulation might serve to extend the range of responses of the sensory neurons and also to integrate internal state information into the chemosensory circuit. Second, genetic tracing studies in mice and flies have shown that the first layer of connections in chemosensory circuits from olfactory epithelium to the glomeruli are stereotyped, while the subsequent connections to higher order sensory processing regions are not. Distributed connectivity to the higher order sensory processing regions has profound implications for how odors are represented in those regions. Third, recent work has revealed that odors are surprisingly sparsely represented in the piriform cortex. The sparse coding in the higher brain centers implies a much greater role for experience and learning in mediating responses to olfactory cues. Analyzing olfactory network function in various species provides us with fascinating clues about how sensory information is acquired, processed and represented at multiple levels within the nervous system.  相似文献   

11.
王鹏  张龙 《环境昆虫学报》2021,43(3):633-641
植食性昆虫的嗅觉在其选择食物的过程中发挥了重要的作用,它能通过对植物挥发物的感受来定向和定位食物源并产生趋近行为,进而根据特殊的化合物或者多种化合物的特异浓度组合来区分寄主和非寄主植物.在这个过程中,昆虫嗅觉器官上相关的嗅觉感受蛋白被植物挥发物激活,形成特异的嗅觉感受通路,在行为上调控昆虫嗅觉选食的能力.本文主要从植食...  相似文献   

12.
Alcedo J  Kenyon C 《Neuron》2004,41(1):45-55
The life span of C. elegans is extended by mutations that inhibit the function of sensory neurons. In this study, we show that specific subsets of sensory neurons influence longevity. We find that certain gustatory neurons inhibit longevity, whereas others promote longevity, most likely by influencing insulin/IGF-1 signaling. Olfactory neurons also influence life span, and they act in a distinct pathway that involves the reproductive system. In addition, we find that a putative chemosensory G protein-coupled receptor that is expressed in some of these sensory neurons inhibits longevity. Together our findings imply that the life span of C. elegans is regulated by environmental cues and that these cues are perceived and integrated in a complex and sophisticated fashion by specific chemosensory neurons.  相似文献   

13.
Female mosquitoes depend on blood to complete their reproductive cycle and rely mainly on chemosensory systems to obtain blood meals. An immunocytochemical analysis reveals a number of serotonin-immunoreactive neurons that innervate the chemosensory systems, suggesting a potential role of serotonin in modulating chemosensory processes. In the primary olfactory system, we identify a single ipsilateral centrifugal neuron with arborizations in higher brain centers; the varicosities of this neuron display volumetric changes in response to both blood feeding and during a circadian rhythm. Six to eight pairs of serotonin-immunoreactive neurons are identified in the primary gustatory neuropil, including the subesophageal ganglion and tritocerebrum. The peripheral chemosensory organs, i.e. the antenna, the maxillary palp and the labium, are described as having extensive serotonergic neurohemal plexi. In addition, we describe the presence of serotonin-immunoreactive fibers in the mechanosensory Johnston's organ. Taking these results together, we discuss the potential role of serotonin as a neuromodulator in the chemosensory system of disease vector mosquitoes.  相似文献   

14.
15.
In rodents, the nasal cavity contains two separate chemosensory epithelia, the main olfactory epithelium, located in the posterior dorsal aspect of the nasal cavity, and the vomeronasal/accessory olfactory epithelium, located in a capsule in the anterior aspect of the ventral floor of the nasal cavity. Both the main and accessory olfactory systems play a role in detection of biologically relevant odors. The accessory olfactory system has been implicated in response to pheromones, while the main olfactory system is thought to be a general molecular analyzer capable of detecting subtle differences in molecular structure of volatile odorants. However, the role of the two systems in detection of biologically relevant chemical signals appears to be partially overlapping. Thus, while it is clear that the accessory olfactory system is responsive to putative pheromones, the main olfactory system can also respond to some pheromones. Conversely, while the main olfactory system can mediate recognition of differences in genetic makeup by smell, the vomeronasal organ (VNO) also appears to participate in recognition of chemosensory differences between genetically distinct individuals. The most salient feature of our review of the literature is that there are no general rules that allow classification of the accessory olfactory system as a pheromone detector and the main olfactory system as a detector of general odorants. Instead, each behavior must be considered within a specific behavioral context to determine the role of these two chemosensory systems. In each case, one system or the other (or both) participates in a specific behavioral or hormonal response.  相似文献   

16.
The olfactory systems of insects and mammals have analogous anatomical features and use similar molecular logic for olfactory coding. The molecular underpinnings of the chemosensory systems that detect taste and pheromone cues have only recently been characterized. Comparison of these systems in Drosophila and mouse uncovers clear differences and a few surprising similarities.  相似文献   

17.
Chemical sensory signals play a crucial role in eliciting motor behaviors. We now review the different motor behaviors induced by chemosensory stimuli in fish as well as their neural substrate. A great deal of research has focused on migratory, reproductive, foraging, and escape behaviors but it is only recently that the molecules mediating these chemotactic responses have become well-characterized. Chemotactic responses are mediated by three sensory systems: olfactory, gustatory, and diffuse chemosensory. The olfactory sensory neuron responses to chemicals are now better understood. In addition, the olfactory projections to the central nervous system were recently shown to display an odotopic organization in the forebrain. Moreover, a specific downward projection underlying motor responses to olfactory inputs was recently described.  相似文献   

18.
It has previously been established that, in threatening situations, animals use alarm pheromones to communicate danger. There is emerging evidence of analogous chemosensory “stress” cues in humans. For this study, we collected alarm and exercise sweat from “donors,” extracted it, pooled it and presented it to 16 unrelated “detector” subjects undergoing fMRI. The fMRI protocol consisted of four stimulus runs, with each combination of stimulus condition and donor gender represented four times. Because olfactory stimuli do not follow the canonical hemodynamic response, we used a model-free approach. We performed minimal preprocessing and worked directly with block-average time series and step-function estimates. We found that, while male stress sweat produced a comparably strong emotional response in both detector genders, female stress sweat produced a markedly stronger arousal in female than in male detectors. Our statistical tests pinpointed this gender-specificity to the right amygdala (strongest in the superficial nuclei). When comparing the olfactory bulb responses to the corresponding stimuli, we found no significant differences between male and female detectors. These imaging results complement existing behavioral evidence, by identifying whether gender differences in response to alarm chemosignals are initiated at the perceptual versus emotional level. Since we found no significant differences in the olfactory bulb (primary processing site for chemosensory signals in mammals), we infer that the specificity in responding to female fear is likely based on processing meaning, rather than strength, of chemosensory cues from each gender.  相似文献   

19.
The vomeronasal organ (VNO) is a sensory organ that influences social and/or reproductive behavior and, in many cases, the survival of an organism. The VNO is believed to mediate responses to pheromones; however, many mechanisms of signal transduction in the VNO remain elusive. Here, we examined the expression of proteins involved in signal transduction that are found in the main olfactory system in the VNO. The localization of many signaling molecules in the VNO is quite different from those in the main olfactory system, suggesting differences in signal transduction mechanisms between these two chemosensory organs. Various signaling molecules are expressed in distinct areas of VNO sensory epithelium. Interestingly, we found the expressions of groups of these signaling molecules in glandular tissues adjacent to VNO, supporting the physiological significance of these glandular tissues. Our finding of high expression of signaling proteins in glandular tissues suggests that neurohumoral factors influence glandular tissues to modulate signaling cascades that in turn alter the responses of the VNO to hormonal status.  相似文献   

20.
Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号