首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Fetal muscle cDNA clones covering at least 11.4 kb of the Duchenne muscular dystrophy (DMD) gene sequence were used to identify a deletion-prone region in DNA from DMD and Becker muscular dystrophy (BMD) patients. Of 36 BMD cases, 17 (47%) had deletions and all of the deletions began in the same intron of the gene. Of 107 DMD patients, 27 (25%) were deleted for this region, and 19 deletions originate in the same intron. Using a cDNA probe for an adjacent region of the gene, 32 new deletions were detected in DMD patients (total 44%). No new BMD deletions were detected. The DMD deletions were very heterogeneous. Thus two cDNA probes covering 2.4 kb could detect 53% of these deletions. Considering the whole locus, DMD and BMD are caused by a deletion of the gene sequence in at least 67% of cases.  相似文献   

2.
Eighty unrelated individuals with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) were found to have deletions in the major deletion-rich region of the DMD locus. This region includes the last five exons detected by cDNA5b-7, all exons detected by cDNA8, and the first two exons detected by cDNA9. These 80 individuals account for approximately 75% of 109 deletions of the gene, detected among 181 patients analyzed with the entire dystrophin cDNA. Endpoints for many of these deletions were further characterized using two genomic probes, p20 (DXS269; Wapenaar et al.) and GMGX11 (DXS239; present paper). Clinical findings are presented for all 80 patients allowing a correlation of phenotypic severity with the genotype. Thirty-eight independent patients were old enough to be classified as DMD, BMD, or intermediate phenotype and had deletions of exons with sequenced intron/exon boundaries. Of these, eight BMD patients and one intermediate patient had gene deletions predicted to leave the reading frame intact, while 21 DMD patients, 7 intermediate patients, and 1 BMD patient had gene deletions predicted to disrupt the reading frame. Thus, with two exceptions, frameshift deletions of the gene resulted in more severe phenotype than did in-frame deletions. This is in agreement with recent findings by Baumbach et al. and Koenig et al. but is in contrast to findings, by Malhotra et al., at the 5' end of the gene.  相似文献   

3.
本文使用了缺失热点区的两个DMD cDNA片段1b-2a及8为探针检测Duc-henne型及Becker型肌营养不良(DMD/BMD)患者的基因缺失。在34例不相关患者中分别检测到5例及8例基因片段缺失,缺失检测率分别为14.7%及23.5%,总检出率为38.2%。结果表明,中国肌营养不良患者的基因缺失也不是随机分布的,主要集中于基因中心附近,其次在基因5′侧。  相似文献   

4.
Summary We studied 38 unrelated patients from southern France with Duchenne (DMD) or Decker (BMD) muscular dystrophy for intragenic deletions of the DMD/ BMD gene. We used both multiplex amplification of selected exons and cDNA probes. Of the 26 (68%) unrelated individuals found to have deletions, 24 (92%) were detected by multiplex polymerase chain reaction. All these deletions have been delineated with regard to the exon-containing HindIII fragments revealed by cDNA probes, and in two cases, junction fragments of altered size were seen. The correlation between phenotype and type of deletion agreed with the reading frame theory, except for two BMD and two DMD cases.  相似文献   

5.
A deletion hot spot in the Duchenne muscular dystrophy gene   总被引:28,自引:0,他引:28  
We have made a detailed study of a deletion hot spot in the distal half of the Duchenne muscular dystrophy (DMD) gene, using intragenic probe P20 (DXS269), isolated by a hybrid cell-mediated cloning procedure. P20 detects 16% deletions in patients suffering from either DMD or Becker muscular dystrophy (BMD), in sharp contrast to the adjacent intragenic markers JBir (7%) and J66 (less than 1%), mapping respectively 200-320 kb proximal and 380-500 kb distal to P20. Of the P20 deletions, 30% start within a region of 25-40 kb, the majority extending distally. P20 was confirmed to map internal to a distal intron of the DMD gene. This region was recently shown by both cDNA analysis (M. Koenig et al., 1987; Cell 50: 509-517), and field inversion electrophoresis studies (J.T. Den Dunnen et al., 1987, Nature (London) 329: 640-642) to be specifically prone to deletions. In addition, P20 detects MspI and EcoRV RFLPs, informative in 48% of the carrier females. Together, these properties make P20 useful for carrier detection, prenatal diagnosis, and the study of deletion induction in both DMD and BMD.  相似文献   

6.
Patterns of exon deletions in Duchenne and Becker muscular dystrophy   总被引:11,自引:0,他引:11  
Summary A panel of patients with Duchenne and Becker muscular dystrophy (DMD and BMD) has been screened with the cDNA probes Cf56a and Cf23a, which detect exons in the central part of the DMD gene. One or more exons were deleted in 60% of patients. The deletions were mapped and prove to be heterogeneous in size and extent, particularly in DMD. Deletions specific to DMD and to BMD are described. Half of all BMD patients have a deletion of one particular small group of exons; smaller deletions within this same group produce the more severe DMD.  相似文献   

7.
L Yuge  L Hui  X Bingdi 《Life sciences》1999,65(9):863-869
One hundred thirty-eight patients with Duchenne/Becker muscular dystrophy (DMD/BMD) were screened with complete cDNA probes and the multiplex polymerase chain reaction (mPCR) amplification of 18 pairs of oligonucleotide primers. Eighty-six deletions and 4 duplications were detected, the deletion frequency being 62.3%. Eighty-two deletions were detected with the two sets of primers described by Chamberlain et al. and Beggs et al, which was 95.4% of deletions detected by complete cDNA probes. Consistent with the deletion locations described previously, the deletions of dystrophin gene in Chinese individuals are clustered mainly in two high-frequency deletion regions of exons 44-52 (68.6%) of 3' side of the gene central regions and exons 1-19 (26.7%) in the 5' side. The distribution of deletions in dystrophin gene is associated with the phenotype of DMD/BMD. In the 25 cases with in-frame deletions, 15 deletions located in the region of exons 2-47 were milder BMD and intermediate patients, as the location of deletions was not the important region of the dystrophin gene.  相似文献   

8.
Molecular deletion patterns in Duchenne and Becker type muscular dystrophy   总被引:5,自引:2,他引:3  
Summary DNA from 80 Duchenne (DMD) and 15 Becker (BMD) index patients was analyzed with 12 genomic probes and the total cDNA. Deletions were detected in 24 DMD (30%) and 10 BMD patients (67%) by genomic probes alone, mostly p20, pXJ, and/or pERT87. All deletions were confirmed by cDNA probes, and an additional 29 DMD deletions were detected, resulting in a total of 63/95 deletions (66%). The majority of the deletions are localized between kb 6.7 and 9.7 of the cDNA; a smaller group, between kb 0.5 and 3.5. Of the deletions, 90% are detected by the three cDNA probes 1–2a, 7, and 8. This can be applied to strategies for carrier detection and prenatal diagnosis. The order of 13 exon-containing HindIII fragments in the region between probes 7 and 9–10, where most of the deletions are found, could be defined. The deletion patterns in DMD and BMD patients are different and well in accordance with the “reading frame theory” of Monaco and coworkers. Thus our findings indicate that a DMD or BMD phenotype may be predicted according to the breakpoint position and the number of deleted exons.  相似文献   

9.
Gene deletions in X-linked muscular dystrophy   总被引:14,自引:3,他引:11       下载免费PDF全文
Of the approximately 170 families with X-linked muscular dystrophy of the Duchenne (DMD) and Becker (BMD) type in Finland, we have studied 90 unrelated patients for intragenic deletions by using the cDNA probes described by Koenig et al. Forty-five patients (50%) had molecular deletions of one or several of the 65 exon-containing HindIII fragments. In six deletion cases junction fragments of altered size were seen. Thirty-eight (84%) of the 45 deletions were detected using only two (1–2a and 8) of the six cDNA subclones. Using a wheelchair age of 12 years to distinguish between DMD and BMD, we found that the proportions of patients with deletions were similar. Deletions were equally common in familial and sporadic disease. BMD was more commonly caused by deletions in the 5' end of the gene than was DMD. In at least three instances deletions of similar type resulted in diseases of similar severity. Of 14 patients with mental retardation seven had deletions; six of these comprised exons contained in probe 8. We conclude that cDNA hybridization studies provide a powerful diagnostic tool in DMD and BMD and that they promise to produce better insights into molecular-clinical correlations.  相似文献   

10.
Summary We have analyzed patient DNA samples in 77 unrelated Duchenne (DMD) and Becker (BMD) muscular dystrophy families, 73 of which were of French Canadian origin. We show that the frequency (68%) and distribution of deletions within the dystrophin gene was neither random nor unique in this population. We localized 33% of the deletions to the proximal portion of the dystrophin gene while 63% involved the exons spanning introns 43 through 55 with breakpoint clusters occurring within introns 44 and 50. Whether the dystrophin open reading frame (ORF) is maintained constrains the distribution of DMD/BMD deletions such that BMD deletions tend to be strikingly homogeneous. Finally, the conservation of the dystrophin ORF and the severity of the clinical phenotype were concordant in 95% of the DMD/BMD deletions documented by this work.  相似文献   

11.
DNA deletions in mild and severe Becker muscular dystrophy   总被引:6,自引:0,他引:6  
Summary The DNA of 33 patients diagnosed as suffering from Becker muscular dystrophy (BMD) has been probed with cloned DNA sequences from Xp21, known to reveal DNA deletions in patients suffering from the more severe Duchenne muscular dystrophy (DMD). Two BMD cases showed clear deletions. A third case gave aberrant band sizes, which further analysis showed to be caused by a small deletion. This suggests that deletions in DXS164 occur approximately as frequently in BMD as they do in DMD. Of the two cases showing large deletions, one is at the severe end of the Becker clinical spectrum, whilst the other is a classical Becker-type dystrophy. The fact that loci defined by probes commonly deleted in classical DMD patients are also deleted in BMD patients of varying severity is strong additional evidence that these disorders are allelic, and further justifies the use of probes with defined linkage relationships to DMD also being used for counselling in BMD families.  相似文献   

12.
We have isolated overlapping human fetal muscle cDNAs encompassing 2.6kb which are localised very close to the 5' end of the Duchenne muscular dystrophy (DMD) gene. Using DNA from patients with deletions of previously reported genomic probes, we have mapped the exons across the region. Investigation of deletions in both DMD and Becker muscular dystrophy (BMD) patients shows the deletions to be present in 10% of cases and heterogeneous.  相似文献   

13.
Comprehensive molecular testing for mutations in the DMD gene causing Duchenne and Becker muscular dystrophy (DMD/BMD) is challenging because of the large size of the gene and the variety of mutation types. There is an increasing demand for comprehensive DMD gene molecular testing, including deletion/duplication testing of 79 exons and direct sequencing of the 14-kb coding region from genomic DNA, to provide confirmation of clinical diagnoses in affected patients and to determine carrier risk for family members. To determine an efficient strategy to prioritize patients for comprehensive molecular testing of the DMD gene, we tested a consecutive cohort of 165 males referred over a 4-year period because of a suspicion of DMD or BMD using: (1) a new quantitative multiplex polymerase chain reaction (PCR) assay designed to detect deletions or duplications in all exons of the gene and the brain promoter and (2) direct sequencing of the coding region and intron/exon boundaries. For the patients being tested because of a suspicion of DMD, deletion/duplication testing followed by direct sequencing detected pathogenic mutations in 98% (106/108 total patients). However, of the patients tested because of a suspicion of BMD, only 60% (34/57 total patients) had causative mutations identified, all of which were deletions or duplications. Our results suggest that direct genomic sequence analysis of the DMD gene is a useful addition to deletion/duplication testing for diagnosis of DMD, but does not provide an improved sensitivity compared to deletion/duplication analysis alone for the diagnosis of BMD. In addition, due to the relatively common finding of single exon deletions and duplications (22%, 27 of 125 total patients with deletions/duplications), methods to examine all exons of the gene for deletions/duplications should be used as the initial molecular quantitative test for DMD and BMD.  相似文献   

14.
The locus DXS269 (P20) defines a deletion hotspot in the distal part of the Duchenne Muscular Dystrophy gene. We have cloned over 90 kilobase-pairs of genomic DNA from this region in overlapping cosmids. The use of whole cosmids as probes in a competitive DNA hybridization analysis proves a fast and convenient method for identifying rearrangements in this region. A rapid survey of P20-deletion patients is carried out to elucidate the nature of the propensity to deletions in this region. Using this technique, deletion breakpoints are pinpointed to individual restriction fragments in patient DNAs without the need for tedious isolation of single copy sequences. Simultaneously, the deletion data yield a consistent restriction map of the region and permit detection of several RFLPs. A 176 bp exon was identified within the cloned DNA, located 3' of an intron exceeding 150 Kb in length. Its deletion causes a frameshift in the dystrophin reading frame and produces the DMD phenotype. This exon is one of the most frequently deleted exons in BMD/DMD patients and its sequence is applied in a pilot study for diagnostic deletion screening using Polymerase Chain Reaction amplification.  相似文献   

15.
Summary The molecular analysis of 127 DMD/BMD patients showed that 73 of them (57%) had deletions in the dystrophin gene. Two different methods were used in this study: (a) hybridization of HindIII-digested genomic DNA with nine cDNA probes corresponding to the entire 14 kb cDNA of the DMD gene; and (b) simultaneous amplification of nine exons of the DMD gene (multiplex DNA amplification) by the polymerase chain reaction (PCR). When the deletion breakpoints of the intragenic deletions were analyzed with regard to their phenotypic consequences, nine patients were found to represent exceptions to the reading-frame hypothesis. Information regarding mental development was also available for 61 of the 73 deleted patients and for 34 of the 54 non-deleted ones. The proportion of mentally retarded patients was found to be similar in the two groups (deleted, 15%; non-deleted, 18%). Finally, in one family, a junction fragment present in the patient was not found in the peripheral blood DNA of the mother but was present in the sister, thus indicating germline mosaicism in the mother.  相似文献   

16.
About 60% of both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) is due to deletions of the dystrophin gene. For cases with a deletion mutation, the "reading frame" hypothesis predicts that BMD patients produce a semifunctional, internally deleted dystrophin protein, whereas DMD patients produce a severely truncated protein that would be unstable. To test the validity of this theory, we analyzed 258 independent deletions at the DMD/BMD locus. The correlation between phenotype and type of deletion mutation is in agreement with the "reading frame" theory in 92% of cases and is of diagnostic and prognostic significance. The distribution and frequency of deletions spanning the entire locus suggests that many "in-frame" deletions of the dystrophin gene are not detected because the individuals bearing them are either asymptomatic or exhibit non-DMD/non-BMD clinical features.  相似文献   

17.
Most known mutations in the gene region responsible for Duchenne or Becker muscular dystrophy are deletions of varying extent. Here we describe a 220-kb insertion within the DMD/BMD gene that cosegregates with a somewhat atypical course of muscular dystrophy in a pedigree. The insertion is demonstrated by field-inversion gel electrophoresis as an enlarged SfiI fragment hybridizing to probe J-Bir, while neighboring SfiI fragments (detected by probes PERT 87 and J-66) are unchanged. Hybridization with DMD c-DNA probes did not reveal alterations in coding sequences. In this pedigree, the altered SfiI fragments provide convenient markers for carrier identification.  相似文献   

18.
Population-based variations in frequency and distribution of dystrophin gene deletions have been recognized in Duchenne/Becker (DMD/BMD) muscular dystrophy patients. In the present study, DNA samples from 121 unrelated DMD/BMD patients from North India were analyzed for deletional studies with multiplex PCR and Southern hybridization. A total of 88 (73%) patients showed intragenic deletions in the dystrophin gene. The observed proportion of gene deletions is relatively high, particularly compared with that of Asian counterparts. However, the distribution of breakpoints across the gene does not show significant variations. Received: 5 June 1996 / Revised: 4 September 1996  相似文献   

19.
The central portion of the dystrophin gene locus is a preferential site for deletions causing progressive muscular dystrophy of the Duchenne type (DMD). The nucleotide sequence of a deletion junction fragment from a DMD patient was determined, revealing that the proximal breakpoint of the deletion in intron 43 fell within the sequence of a transposon-like element. This segment, belonging to the THE-1 family of human transposable elements, is normally present in a complete form in intron 43 of the dystrophin gene. The deletion mutation was maternally transmitted and eliminated two-thirds of the THE-1 element. Analysis of DNA from additional DMD patients revealed a second deletion with the proximal breakpoint mapping within the same THE-1 element.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号