首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resistance of cultured mouse neuroblastoma cells, primary cultures of rat cerebellar neurons, and rat brain astrocytes to a block of aerobic metabolism was studied. Parameters such as lactate production and ATP content were measured in the presence of antimycin A and under various conditions of glucose, oxygen, and serum supply. The following conclusions can be drawn: (1) All cell types studied were characterized by an active production of lactate; (2) Incubation of the various cell types in the absence of glucose at normal oxygen tension did not affect ATP levels; (3) Respiration blocked by antimycin led to a Pasteur effect; (4) Neuroblastoma cells, but not the other cell types, were fully resistant to inhibition of respiration provided that sufficient glucose was supplied; (5) In the absence of glucose no stores of energy or utilizable substrate were present in the cell types studied when respiration was blocked; (6) In the presence of fetal calf serum anoxic neurons showed irreversible signs of degeneration.  相似文献   

2.
High glucose consumption and lactate synthesis in aerobic glycolysis are a hallmark of cancer cells. They can form lactate also in glutaminolysis, but it is not clear how oxygen availability affects this process. We studied lactate synthesis at various oxygen levels in human primary (SW480) and metastatic (SW620) colon cancer cells cultured with L‐Ser and/or L‐Asp. Glucose and lactate levels were determined colorimetrically, amino acids by HPLC, expression of AST1‐mRNA and AST2‐mRNA by RT‐PCR. In both lines glucose consumption and lactate synthesis were higher at 10% than at 1% oxygen, and lactate/glucose ratio was increased above 2.0 by L‐Asp. AST1‐mRNA expression was independent on oxygen and cell line, but AST2‐mRNA was lower at hypoxia in SW480. We conclude that, in both cell lines at 1% hypoxia, lactate is formed mainly from glucose but at 10% normoxia also from L‐Asp. At 10% normoxia, lactate synthesis is more pronounced in primary than metastatic colon cancer cells.  相似文献   

3.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

4.
Activities of enzymes in glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and glutaminolysis have been determined in the mouse myeloma SP2/0.Ag14. Cells were grown on IMDM medium with 5% serum in steady-state chemostat culture at a fixed dilution rate of 0.03 h-1. Three culture conditions, which differed in supply of glucose and oxygen, were chosen so as to change catabolic fluxes in the central metabolism, while keeping anabolic fluxes constant. In the three steady-state situations, the ratio between specific rates of glucose and glutamine consumption differed by more than twentyfold. The specific rates of glucose consumption and lactate production were highest at low oxygen supply, whereas the specific rate of glutamine consumption was highest in the culture fed with low amounts of glucose. Under low oxygen conditions, the specific production of ammonia increased and the consumption pattern of amino acids showed large changes compared with the other two cultures. For the three steady states, activities of key enzymes in glycolysis, the pentose phosphate pathway, glutaminolysis, and the TCA cycle were measured. The differences in the in vivo fluxes were only partially reflected in changes in enzyme levels. The largest differences were observed in the levels of glycolytic enzymes, which were elevated under conditions of low oxygen supply. High activities of phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32) in all cultures suggest an important role for this enzyme as a link between glutaminolysis and glycolysis. For all enzymes, in vitro activities were found that could accommodate the estimated maximum in vivo fluxes. These results show that the regulation of fluxes in central metabolism of mammalian cells occurs mainly through modulation of enzyme activity and, to a much lesser extent, by enzyme synthesis.  相似文献   

5.
The yields of energy from oxidation of fatty acids, glucose, and glutamine were compared in cultures of chick embryo heart muscle (heart) and HeLa cells. Aerobic energy production, as measured by oxygen utilization, was comparable in the two cell types. In media containing dialyzed sera, the rates of incorporation of fatty acids directly into lipids were similar in both cells and accounted for > 97% of fatty acid metabolism in HeLa cells. However, in heart cells only 45% ended in lipid, 42% in protein, and 13% was released as CO2; the latter two products probably reflect the oxidation of fatty acids to acetyl-coenzyme A (-CoA) and its subsequent metabolism in the citrate cycle. Increased serum concentration in the medium did not affect fatty acid metabolism in HeLa cultures, but resulted in greater oxidation by heart cells (> 100 times that by HeLa cells). The metabolisms of both glucose and glutamine were similar in heart and HeLa cells with ? 60% of glucose carbon ending as medium lactate and only 3–5% converted to acetyl-CoA. About 25% of glutamine carbon ended as CO2 and increased utilizations with increasing serum concentrations was accountable in both cells by increased lactate from glucose and glutamate from glutamine. CO2 production (and energy) from glutamine was independent of glutamine concentration within a tenfold range of physiological concentrations. The yields of energy have been calculated. In 10% dialyzed calf serum, oxidation of glutamine carbon provided about half of the total energy in heart cells, glucose about 35–45%, with most coming from glycolysis; oxidation of fatty acid carbon provided only 5–10%. That > 90% of the aerobic energy comes from glutamine in both cells can account for the comparable rates of oxygen utilization. HeLa cells derived little or no energy from fatty acids.  相似文献   

6.
We compared the proliferation of neonatal and adult airway smooth muscle cells (ASMC) with no/moderate lung disease, in glucose- (energy production by glycolysis) or glucose-free medium (ATP production from mitochondrial oxidative phosphorylations only), in response to 10% fetal calf serum (FCS) and PDGF-AA. In the presence of glucose, cell counts were significantly greater in neonatal vs. adult ASMC. Similarly, neonatal ASMC DNA synthesis in 10% FCS and PDGF-AA, and [Ca2+]i responses in the presence of histamine were significantly enhanced vs. adults. In glucose-free medium, cell proliferation was preserved in neonatal cells, unlike in adult cells, with concomitant increased porin (an indicator of mitochondrial activity) protein expression. Compared to adults, stimulated neonatal human ASMC are in a rapid and robust proliferative phase and have the capacity to respond disproportionately under abnormal environmental conditions, through increased mitochondrial biogenesis and altered calcium homeostasis.  相似文献   

7.
Resting Yoshida AH130 hepatoma cells, harvested at the plateau of tumor development in vivo, were recruited into the cycling state following transfer to an in vitro system whereby these cells were incubated in the autologous ascites plasma diluted with buffered saline and enriched with glucose. In this system, cell recruitment into the phase of DNA synthesis (S phase) strictly depends on the activity of the respiratory chain and is abolished by anaerobiosis as well as by antimycin A, although the intracellular levels of ATP and the rate of protein synthesis are practically unaffected by these treatments. Furthermore, 2,4-dinitrophenol, at concentrations which uncouple the respiratory phosphorylation and hence enhance both glycolysis and oxygen consumption, does not hinder cell promotion into S phase. Thus, the absolute respiration dependence of cycling resumption by resting ascites cells does not seem to rely on respiratory ATP supply, but rather is linked to the electron flow through the respiratory chain.  相似文献   

8.
9.
A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 x 10(6) cells/mL, a very high concentration of 1.36 x 10(7) cells/mL with a high cell viability (>90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Since nitric oxide (NO) in many cells is involved in energy metabolism, the aim of this study was to evaluate the role of isosorbide dinitrate (ISDN), a NO donor, in energy metabolism of rat reticulocytes, particularly due to their high content of hemoglobin--an effective scavenger of NO. Rat reticulocyte-rich red blood cell suspensions were aerobically incubated in the absence (control) or in the presence of different concentrations of ISDN. ISDN decreased total and coupled oxygen consumption (p<0.05) while increased uncoupled oxygen consumption (p<0.05) in a dose- and time-dependent manner. This was followed by enhancement of glycolysis, as measured by increased glucose consumption and lactate accumulation (p<0.05). Levels of all glycolytic intermediates in the presence of ISDN indicate only stimulation of pyruvate kinase activity. ISDN did not alter the concentration of ATP, while increased ADP and AMP levels (p>0.05). In rat reticulocytes under steady-state conditions, 95.4% of overall energy was produced by oxidative phosphorylation but only 4.6% by glycolysis. Due to a reduced coupled oxygen consumption in the presence of ISDN, ATP production via oxidative phosphorylation was significantly diminished. A simultaneous increase of glycolytic ATP production is not enough to ensure constant ATP production. The calculated mean ATP turnover time was prolonged by 199% in the presence of 1.5 mmol/l ISDN. In conclusion, ISDN a) inhibited total and coupled respiration but enhanced uncoupled respiration, b) stimulated glycolysis, c) decreased ATP production and d) prolonged ATP turnover time in rat reticulocytes. These effects were mediated by NO as the effector molecule.  相似文献   

11.
Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn’t. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.  相似文献   

12.
Chinese hamster ovary (CHO) cells were cultivated in a compact loop bioreactor using MEM-alpha medium supplemented with 10% fetal calf serum. Effects of physical and chemical environments, i.e., pH in the medium, stirring speed of impellers, temperature and partial pressure of oxygen (pO2) upon growth of suspended cells in the bioreactor were determined in batch cultures. Growth behavior was characterized by specific rates of growth (mu), glucose consumption (qG) and lactate production (qL), and the yield coefficients (cell yield from glucose, YX/G, and lactate yield from glucose, YL/G). An effect of medium osmolality was also evaluated with T-flask monolayer cultivation. The best growth was observed at pH 7.6, 37 degrees C, 400 rpm, 50-100% saturation with oxygen and 320 mOsmol kg-1. Corresponding to the previous work with a human melanoma cell line, the sophisticated cultivation and process control systems have been improved for CHO cells.  相似文献   

13.
The effects of sodium propionate, acetate, lactate and citrate on cell proliferation, glucose and oxygen consumption, and ATP production in Listeria monocytogenes were investigated in growing and resting cells. Media pH was 6.7-6.8. Growth inhibition increased while glucose consumption continued in the presence of ≥ 1% propionate, ≥ 3% acetate and ≥ 5% lactate in broth during incubation at 35°C, indicating that glucose consumption was uncoupled from cell proliferation. Acetate and propionate were the most effective antilisterials, whereas citrate (5%) was only slightly inhibitory. Of the four salts, only lactate supported growth, oxygen consumption and ATP production. While concentrations of 1 and 5% propionate, acetate and citrate did not have an effect on oxygen consumption, they inhibited ATP production. ATP production in the presence of the four salts was consistently lower at pH 6.0 than at neutral pH. Lactate served as an alternative energy source for L. monocytogenes in the absence of glucose but became toxic to the organism in the presence of the carbohydrate.  相似文献   

14.
The goal of this study was to determine whether changes in cardiac metabolism in Type 2 diabetes are associated with contractile dysfunction or impaired response to ischemia. Hearts from Zucker diabetic fatty (ZDF) and lean control rats were isolated and perfused with glucose, lactate, pyruvate, and palmitate. The rates of glucose, lactate, pyruvate, and palmitate oxidation rates and glycolysis were determined during baseline perfusion and low-flow ischemia (LFI; 0.3 ml/min for 30 min) and after LFI and reperfusion. Under all conditions, ATP synthesis from palmitate was increased and synthesis from lactate was decreased in the ZDF group, whereas the contribution from glucose was unchanged. During baseline perfusion, the rate of glycolysis was lower in the ZDF group; however, during LFI and reperfusion, there were no differences between groups. Despite these metabolic shifts, there were no differences in oxygen consumption or ATP production rates between the groups under any perfusion conditions. Cardiac function was slightly depressed before LFI in the ZDF group, but during reperfusion, function was improved relative to the control group despite the increased dependence on fatty acids for energy production. These data suggest that in this model of diabetes, the shift from carbohydrates to fatty acids for oxidative energy production did not increase myocardial oxygen consumption and was not associated with impaired response to ischemia and reperfusion.  相似文献   

15.
Ammonia and lactate are the major byproducts from mammalian cells grown in medium containing glutamine and glucose. Both can be toxic to cells, and may limit the productivity of commercial bioreactors. The transient and steady-state responses of hybridoma growth and metabolism to lactate and ammonia pulse and step changes in continuous suspension culture have been examined. No inhibition was observed at 40 mM lactate. Cell growth was inhibited by 5 mM ammonia, but the cells were able to adapt to ammonia concentrations as high as 8.2 mM. Ammonia production decreased and alanine production increased in response to higher ammonia concentrations. Increased ammonia concentrations also inhibited glutamine and oxygen consumption. The specific oxygen consumption rate decreased by an order of magnitude after an ammonia pulse to 18 mM. Under these conditions, over 90% of the estimated ATP production was due to glycolysis and a large fraction of glutamine was converted to lactate.  相似文献   

16.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

17.
3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.  相似文献   

18.
Overall glucose metabolism was evaluated by measuring the rate of oxygen consumption (QO2) and lactate production in the pedicle skin flaps of rats. Skin flaps exhibited increases in QO2 and lactate production in vitro. The distal portion of the flap is characterized by a greater deposition of glucose to lactate during the initial 3 days following flap elevation. The contribution of glycolysis and of the oxidative pathways to glucose metabolism in skin flaps approximates that in normal skin on day 7 postoperatively.  相似文献   

19.
The energy metabolism of rat thymus cells has been investigated using preparations of isolated cells obtained by mechanical treatment of whole organs. The addition of glycolytic substrates such as glucose, pyruvate and lactate stimulates the endogenous respiration of these cells by 50%. On the other hand, succinate, glutamate and malate do not produce any effect. Oligomycin (10 mug/ml) inhibits both endogenous and glucose stimulated respiration by about 40%; 2, 4-DNP (50 muM) increases by 100% glucose induced respiration. The results obtained by using mitochondrial and glycolytic inhibitors as well as aminoxyacetic acid (AOA) and following pyridine nucleotides redox changes, support the idea that in thymus cells glucose is able to induce a great enhancement of O2 consumption both by raising the level of endogenous pyruvate and feeding the mitochondrial respiratory chain with cytosolic reducing equivalents, through an active malate-aspartate shuttle. Thymus cells exhibit a high Pasteur effect (74%). Both AOA and 2,4 DNP are able to stimulate aerobic lactate accumulation by 200% and 100% respectively, indicating that either the redox or phosphate potential do influence the rate of aerobic glycolysis in isolated thymus cells. Similar experiments are also reported on other cells with well known biochemical characteristics.  相似文献   

20.
Glucagon and N,(6)O(2)-dibutyryl cyclic adenosine 3',5'-cyclic monophosphate (Bt(2)cAMP) inhibit fatty acid synthesis from acetate by more than 90% and prevent citrate formation in chick hepatocytes metabolizing glucose. With substrates that enter glycolysis at or below triose-phosphates, e.g., fructose, lactate, or pyruvate, Bt(2)cAMP has no effect on the citrate level and its inhibitory effect on fatty acid synthesis is substantially reversed. Because acetyl-CoA carboxylase requires a tricarboxylic acid activator for activity, it is proposed that regulation of fatty acid synthesis by Bt(2)cAMP is due, in part, to changes in the citrate level. Reduced citrate formation appears to result from a cAMP-induced inhibition of glycolysis. Bt(2)cAMP inhibits (14)CO(2) production from [1-(14)C]-, [6-(14)C]-, and [U-(14)C]glucose and has little effect on (14)CO(2) formation from [1-(14)C]- or [2-(14)C]pyruvate or from [1-(14)C]fructose. [(14)C]Lactate formation from glucose is depressed 50% by Bt(2)cAMP. In the presence of an inhibitor of mitochondrial pyruvate transport lactate accumulation is enhanced, but continues to be lowered 50% by Bt(2)cAMP. The activity of phosphofructokinase is greatly decreased in Bt(2)cAMP-treated cells while the activities of pyruvate kinase and acetyl-CoA carboxylase are unaffected. It appears that decreased glycolytic flux and decreased citrate formation result from depressed phosphofructokinase activity. Fatty acid synthesis from [(14)C]acetate is partially inhibited by Bt(2)cAMP in the presence of fructose, lactate, and pyruvate despite a high citrate level. Incorporation of [(14)C]fructose, [(14)C]pyruvate, or [(14)C]lactate into fatty acids is similarly depressed by Bt(2)cAMP. Synthesis of cholesterol from [(14)C]acetate or [2-(14)C]pyruvate is unaffected by Bt(2)cAMP. These results implicate a second site of inhibition of fatty acid synthesis by Bt(2)cAMP that involves the utilization, but not the production, of cytoplasmic acetyl-CoA.-Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号