首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photosynthetic energy storage yield of uncoupled thylakoid membranes was monitored by photoacoustic spectroscopy at various measuring beam intensities. The energy storage rate as evaluated by the half-saturation measuring beam intensity (i50) was inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea, by heat inactivation or by artificial electron acceptors specific for photosystem I or photosystem II; and was activated by electron donors to photosystem I. The reactions involving both photosystems were all characterized by a similar maximal energy storage yield of 16±2 percent. The data could be interpreted if we assumed that the energy storage elicited by the photosystems at 35 Hz is detected at the level of the plastoquinone pool.Abbreviations PS photosystem - Tes N-Tris [hydroxymethl] methyl-2-aminoethanesulfonic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - FeCN potassium ferricyanide - DCBQ 2,5-dichlorobenzoquinone - TMPD N,N,N-tetramethyl-p-phenilenediamine  相似文献   

2.
The effects of electric fields on the absorption spectra of the carotenoids spheroidene and spheroidenone in photosynthetic antenna and reaction center complexes (wild-type and several mutants) from purple non-sulfur bacteria are compared with those for the isolated pigments in organic glasses. In general, the field effects are substantially larger for the carotenoid in the protein complexes than for the extracted pigments and larger for spheroidenone than spheroidene. Furthermore, the electrochromic effects for carotenoids in all complexes are much larger than those for the Qx transitions of the bacteriochlorophyll and bacteriopheophytin pigments which absorb in the 450-700 nm spectral region. The underlying mechanism responsible for the Stark effect spectra in the complexes is found to be dominated by a change in permanent dipole moment of the carotenoid upon excitation. The magnitude of this dipole moment change is found to be considerably larger in the B800-850 complex compared to the reaction center for spheroidene; it is approximately equivalent in the two complexes for spheroidenone. These results are discussed in terms of the effects of differences in the carotenoid functional groups, isomers and perturbations on the electronic structure from interactions with the organized environment in the proteins. these data provide a quantitative basis for the analysis of carotenoid bandshifts which are used to measure transmembrane potential, and they highlight some of the pitfalls in making such measurements on complex membranes containing multiple populations of carotenoids. The results for spheroidenone should be useful for studies of mutant proteins, since mutant strains are often grown semi-aerobically to minimize reversion.  相似文献   

3.
《BBA》2020,1861(4):148050
During the past two decades, two-dimensional electronic spectroscopy (2DES) and related techniques have emerged as a potent experimental toolset to study the ultrafast elementary steps of photosynthesis. Apart from the highly engaging albeit controversial analysis of the role of quantum coherences in the photosynthetic processes, 2DES has been applied to resolve the dynamics and pathways of energy and electron transport in various light-harvesting antenna systems and reaction centres, providing unsurpassed level of detail. In this paper we discuss the main technical approaches and their applicability for solving specific problems in photosynthesis. We then recount applications of 2DES to study the exciton dynamics in plant and photosynthetic light-harvesting complexes, especially light-harvesting complex II (LHCII) and the fucoxanthin-chlorophyll proteins of diatoms, with emphasis on the types of unique information about such systems that 2DES is capable to deliver. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.  相似文献   

4.
5.
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (LCM) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)–phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.  相似文献   

6.
Thermal emission and photochemical energy storage were examined in photosystem I reaction center/core antenna complexes (about 40 Chl a/P700) using photoacoustic spectroscopy. Satisfactory signals could only be obtained from samples bound to hydroxyapatite and all samples had a low signal-to-noise ratio compared to either PS I or PS II in thylakoid membranes. The energy storage signal was saturated at low intensity (half saturation at 1.5 W m-2) and predicted a photochemical quantum yield of >90%. Exogenous donors and acceptors had no effect on the signal amplitudes indicating that energy storage is the result of charge separation between endogenous components. Fe(CN)6 -3 oxidation of P700 and dithionite-induced reduction of acceptors FA-FB inhibited energy storage. These data are compatible with the hypothesis that energy storage in PS I arises from charge separation between P700 and Fe-S centers FA-FB that is stable on the time scale of the photoacoustic modulation. High intensity background light (160 W m-2) caused an irreversible loss of energy storage and correlated with a decrease in oxidizable P700; both are probably the result of high light-induced photoinhibition. By analogy to the low fluorescence yield of PS I, the low signal-to-noise ratio in these preparations is attributed to the short lifetime of Chl singlet excited states in PS I-40 and its indirect effect on the yield of thermal emission.Abbreviations FFT fast Föurier transform - HA hydroxyapatite - I50 half saturation intensity for energy storage - PA photoacoustic - PS photosystem - PS I-40 photosystem I reaction center/core antenna complex containing about 40 Chl a/P700 - 201-1 photoacoustic energy storage signal - S/N signal-to-noise  相似文献   

7.
In this work, we evaluated changes in the energy dissipation on electron transport chain of photosystems of leaves of four common bean (Phaseolus vulgaris L.) genotypes (cultivars and landraces) in response to root system flooding. Common bean plants (BRS Expedito and Iraí—cultivars; TB 02–24 and TB 03–13—landraces) were grown in soil and commercial substrate (1:1). At the early reproductive stages, the root system was subjected to flooding by adding distilled water up to 2 cm above the substrate surface for 4 days. Control plants were kept under normoxia. Chlorophyll a fluorescence, gas exchange, photorespiration, antioxidative enzymes and reactive oxygen species (ROS) were measured in leaves on the 4th day of flooding. Flooding of the root system reduced gas exchange in all genotypes with strong effects in CO2 assimilation. BRS Expedito genotype had a greater energy dissipation through fluorescence and heat over Iraí, TB 02–24 and TB 03–13, with regard of metabolic regulation through photorespiration to alleviate the excess of ATP/NADPH produced by the electron transport chain (ETC). On the other hand, the genotypes Iraí, TB 02–24 and TB 03–13 induced more efficiently the antioxidative enzyme system to cope with the deleterious effects of ROS in comparison to BRS Expedito. Further, the dynamic energy dissipation of the excess absorbed energy by the photosynthetic ETC was differentially dissipated in all four common bean genotypes.  相似文献   

8.
Ma CW  Xiu ZL  Zeng AP 《PloS one》2011,6(10):e26453
Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term "protein dynamical modules" based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine.  相似文献   

9.
Photosynthetic light harvesting is a unique life process that occurs with amazing efficiency. Since the discovery of the structure of the bacterial peripheral light-harvesting complex (LH2), this process has been studied using a variety of advanced laser spectroscopic methods. We are now in a position to discuss the physical origins of excitation energy transfer and trapping in the LH2 and LH1 antennae of photosynthetic purple bacteria. We demonstrate that the time evolution of the state created by the light is determined by the combined action of excitonic pigment-pitment interactions, energetic disorder, and coupling to nuclear motion in a pigment-protein complex. A quantitative fit of experimental data using Redfield theory allowed us to determine the pathways and time scales of exciton and vibrational relaxation and analyze separately different contributions to the measured transient absorption dynamics. Furthermore, these dynamics were observed to be strongly dependent on the excitation wavelength. A numerical fit of this dependence turns out to be extremely critical to a variation of the structure and disorder parameters and, therefore, can be used as a test for different antenna models (disordered ring, elliptical deformations, correlated disorder, etc.). The calculated equilibration dynamics in the exciton basis allow a visualization of the exciton motion using a density matrix picture in real space.  相似文献   

10.
Quantifying energy dissipation by grazing animals in harsh environments   总被引:1,自引:0,他引:1  
Grazing systems in harsh environments are common throughout the world, and animal production is the mainstay of the livelihoods of many resource-poor farmers. The energy cost of the various activities involved in the process of harvesting the pasture to transform it into animal product can be estimated through an energy balance. This cost would be the difference between the metabolizable energy intake (MEI) and the energy expenditures for maintenance (MEm), temperature regulation (MEtr), and the energy for production (MEp). Each of the ME has its own net energy (NE) and its associated efficiency (K). When MEI>MEm+MEtr+MEp, the difference is attributable to the energy dissipated during grazing. The efficiency of converting the energy consumed into animal products depends on the magnitude of the dissipation. The inefficiency is associated with the energy spent in locomotion and the stress produced when there is low availability of energy in the pasture. This paper presents a method to quantify the dissipation of energy by grazing animals by considering it as a function of available energy. Such an understanding is required in order to develop management strategies to increase conversion efficiency.  相似文献   

11.
We present a detailed conformational study of 15N-labelled actinomycin D in different organic solvents using 1H, 15N and two-dimensional (2D) NMR techniques at 30.4 MHz and 50.6 MHz. The assignment of the threonine and valine 15N resonances to the individual residues on the alpha- or beta-lactone rings was achieved via heteronuclear shift-correlated 2D NMR experiments. The solvent perturbation studies allow an estimation of the solvent accessibility of the nitrogens and carbonyl groups. Evidence is presented that the pentapeptide rings of actinomycin D have different conformations in polar and in apolar solvents. The chromophoric N10 is efficiently solvent-protected, the solvent-dependence of its 15N resonance resulting from solvent interactions at other positions of the molecule and from solvent-dependent changes in the twisting of the chromophoric system. The chromophoric 2-amino nitrogen is shown to exhibit a strong sp2 character due to the formation of a conjugated system with the carbonyl group at C1. Such a conjugation requires a non-planar chromophoric ring system. Additionally, a hydrogen bond connecting the 2-amino and the 1-carbonyl group was detected. In some solvents, two resonances appear for the 2-amino nitrogen implying the presence of the 2-amino group in two different conformations. The possible implications of the non-planarity of the chromophore for the intercalation process and for the biological activity of the drug are discussed.  相似文献   

12.
13.
An important function of skeletal muscle is deceleration via active muscle fascicle lengthening, which dissipates movement energy. The mechanical interplay between muscle contraction and tendon elasticity is critical when muscles produce energy. However, the role of tendon elasticity during muscular energy dissipation remains unknown. We tested the hypothesis that tendon elasticity functions as a mechanical buffer, preventing high (and probably damaging) velocities and powers during active muscle fascicle lengthening. We directly measured lateral gastrocnemius muscle force and length in wild turkeys during controlled landings requiring rapid energy dissipation. Muscle-tendon unit (MTU) strain was measured via video kinematics, independent of muscle fascicle strain (measured via sonomicrometry). We found that rapid MTU lengthening immediately following impact involved little or no muscle fascicle lengthening. Therefore, joint flexion had to be accommodated by tendon stretch. After the early contact period, muscle fascicles lengthened and absorbed energy. This late lengthening occurred after most of the joint flexion, and was thus mainly driven by tendon recoil. Temporary tendon energy storage led to a significant reduction in muscle fascicle lengthening velocity and the rate of energy absorption. We conclude that tendons function as power attenuators that probably protect muscles against damage from rapid and forceful lengthening during energy dissipation.  相似文献   

14.
Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale‐down and scale‐up become crucial in the development of robust cell‐culture processes. For successful scale‐up and scale‐down of cell culture operations, it is important to understand the scale‐dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:760–764, 2014  相似文献   

15.
High pressure is used with hole burning and absorption spectroscopies at low temperatures to study the pressure dependence of the B800B850 energy transfer rate in the LH2 complex of Rhodobacter sphaeroides and to assess the extent to which pressure can be used to identify and characterize states associated with strongly coupled chlorophyll molecules. Pressure tuning of the B800–B850 gap from 750 cm\s-1 at 0.1 MPa to 900 cm-1 at 680 MPa has no measurable effect on the 2 ps energy transfer rate of the B800–850 complex at 4.2 K. An explanation for this resilience against pressure, which is supported by earlier hole burning studies, is provided. It is based on weak coupling nonadiabatic transfer theory and takes into account the inhomogeneous width of the B800–B850 energy gap, the large homogeneous width of the B850 band from exciton level structure and the Franck-Condon factors of acceptor protein phonons and intramolecular BChl a modes. The model yields reasonable agreement with the 4.2 K energy transfer rate and is consistent with its weak temperature dependence. It is assumed that it is the C9-ring exciton levels which lie within the B850 band that are the key acceptor levels, meaning that BChl a modes are essential to the energy transfer process. These ring exciton levels derive from the strongly allowed lowest energy component of the basic B850 dimer. However, the analysis of B850s linear pressure shift suggests that another Förster pathway may also be important. It is one that involves the ring exciton levels derived from the weakly allowed upper component of the B850 dimer which we estimate to be quasi-degenerate with B800. In the second part of the paper, which is concerned with strong BChl monomer-monomer interactions of dimers, we report that the pressure shifts of B875 (LH2), the primary donor absorption bands of bacterial RC (P870 of Rb. sphaeroides and P960 of Rhodopseudomonas viridis) and B1015 (LH complex of Rps. viridis) are equal and large in value (-0.4 cm01/MPa at 4.2 K) relative to those of isolated monomers in polymers and proteins (< -0.1 cm01/MPa). The shift rate for B850 at 4.2 K is-0.28 cm–1/MPa. A model is presented which appears to be capable of providing a unified explanation for the pressure shifts.Abbreviations B800 BChl antenna band absorbing (at room temperature) at 800 nm (B850, B875, B1015 are defined similarly) - CD circular dichroism - FC factor Franck-Condon factor - FMO comple Fenna-Matthews-Olson complex - L-S theory Laird-Skinner theory - LH1 core light-harvesting complex of the BChl antenna complexes - LH2 peripheral light-harvesting complex of the BChl antenna complexes - NPHB non-photochemical hole burning - P960 absorption band of special pair of Rhodopseudomonas viridis absorbing at 960 nm (room temperature). P870 of Rhodobacter sphaeroides is defined similarly - QM/MM results quantum mechanical/molecular mechanical results - RC reaction center - ZPH zero phonon hole  相似文献   

16.
17.
The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977–982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or ‘wasteful’ NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane.  相似文献   

18.
The photosynthetic purple bacteria such as Rb. sphaeroides possesses an intracytoplasmic membrane (ICM) and a variety of pigment-binding membrane proteins located in the ICM, acting as photoreceptor. Such photosynthetic apparatus is concentrated in the ICM. It is composed of three multimeric membrane-bound proteins; light-harvesting complexes (LH 1, LH 2), a reaction center (RC) and a cytochrome b/c1 complex. We have purified these membranes, which are called chromatophores, and characterized the structure and dynamics of the photosynthetic membrane-bound proteins by means of multi-nuclear solid state NMR. First, the isotropic chemical shift of carbonyl carbons in natural abundance and [1-13C] Phe labeled chromatophores indicates that the membrane-bound proteins take mainly the helical conformation. Second, the chemical shifts of side-chain resonances of uniformly 15N-labeled chromatophores indicate the side-chain histidine residue is mainly hydrogen bonded, whereas structural heterogeneity of arginine and lysine side-chains are probed by those wide distribution of 15N shifts. Thirdly, the [β-2H3]Ala and [ε-2H2]Tyr labeling of the chromatophores are performed and dynamics of the [β-2H]Ala and the [ε-2H2]Tyr labeled chromatophores are studied by means of 2H solid state NMR. The dynamics of [β-2H3]Ala is found to be a 108Hz three-site jump motion with 10° liberation along the Cα-Cβ bond axis. The 2H-NMR powder pattern spectrum of [ε-2H2] Tyr labeled chromatophores was interpreted with an averaged correlation time of 5×105 Hz with 180° two-fold flips, the result of the averaging of two kinds of split spectra in terms of motional time scale. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
《BBA》2020,1861(4):148064
Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; λ = 700–800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chl f, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chl f. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis.This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.  相似文献   

20.
Photosynthetically active pigments are usually organized into pigment-protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment-protein as well as pigment-pigment interactions. Thus, resolution of spectral substructures of the pigment-protein complexes may provide valuable insight into structure-function relationships. By means of conventional (linear) and time-resolved spectroscopic techniques, however, it is often difficult to resolve the spectral substructures of complex pigment-protein assemblies. Nonlinear polarization spectroscopy in the frequency domain (NLPF) is shown to be a valuable technique in this regard. Based on initial experimental work with purple bacterial antenna complexes as well as model systems NLPF has been extended to analyse the substructure(s) of very complex spectra, including analyses of interactions between chlorophylls and "optically dark" states of carotenoids in LHCs. The paper reviews previous work and outlines perspectives regarding the application of NLPF spectroscopy to disentangle structure-function relationships in pigment-protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号