首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Zoonens M  Giusti F  Zito F  Popot JL 《Biochemistry》2007,46(36):10392-10404
Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep membrane proteins (MPs) water-soluble while stabilizing them biochemically. We have examined the factors that determine the size and dispersity of MP/APol complexes and studied the dynamics of the association, taking as a model system the transmembrane domain of Escherichia coli outer membrane protein A (tOmpA) trapped by A8-35, a polyacrylate-based APol. Molecular sieving indicates that the solution properties of the APol largely determine those of tOmpA/APol complexes. Achieving monodispersity depends on using amphipols that themselves form monodisperse particles, on working in neutral or basic solutions, and on the presence of free APols. In order to investigate the role of the latter, a fluorescently labeled version of A8-35 has been synthesized. F?rster resonance energy transfer measurements show that extensive dilution of tOmpA/A8-35 particles into an APol-free medium does not entail any detectable desorption of A8-35, even after extended periods of time (hours-days). The fluorescent APol, on the other hand, readily exchanges for other surfactants, be they detergent or unlabeled APol. These findings are discussed in the contexts of sample optimization for MP solution studies and of APol-mediated MP functionalization.  相似文献   

2.
Amphipols (APols) have become important tools for the stabilization, folding, and in vitro structural and functional studies of membrane proteins (MPs). Direct crystallization of MPs solubilized in APols would be of high importance for structural biology. However, despite considerable efforts, it is still not clear whether MP/APol complexes can form well-ordered crystals suitable for X-ray crystallography. In the present work, we show that an APol-trapped MP can be crystallized in meso. Bacteriorhodopsin (BR) trapped by APol A8-35 was mixed with a lipidic mesophase, and crystallization was induced by adding a precipitant. The crystals diffract beyond 2 Å. The structure of BR was solved to 2 Å and found to be indistinguishable from previous structures obtained after transfer from detergent solutions. We suggest the proposed protocol of in meso crystallization to be generally applicable to APol-trapped MPs.  相似文献   

3.
Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols. NAPol-trapped BR was shown to undergo its complete photocycle. Because of the pH insensitivity of NAPols, solution nuclear magnetic resonance (NMR) two-dimensional (1)H-(15)N heteronuclear single-quantum coherence spectra of NAPol-trapped outer MP X from Escherichia coli (OmpX) could be recorded at pH 6.8. They present a resolution similar to that of the spectra of OmpX/A8-35 complexes recorded at pH 8.0 and give access to signals from solvent-exposed rapidy exchanging amide protons. Like A8-35, NAPols can be used to fold MPs to their native state as demonstrated here with BR and with the ghrelin G protein-coupled receptor GHS-R1a, thus extending the range of accessible folding conditions. Following NAPol-assisted folding, GHS-R1a bound four of its specific ligands, recruited arrestin-2, and activated binding of GTPγS by the G(αq) protein. Finally, cell-free synthesis of MPs, which is inhibited by A8-35 and sulfonated amphipols, was found to be very efficient in the presence of NAPols. These results open broad new perspectives on the use of amphipols for MP studies.  相似文献   

4.
Amphipols are short amphipathic polymers designed to stabilize membrane proteins in aqueous solutions in the absence of detergent. Bacteriorhodopsin (BR), a light-driven proton pump, has been denatured, either by direct solubilization of the purple membrane in sodium dodecylsulfate (SDS) solution or by a procedure that involves delipidation with organic solvent followed by transfer to SDS, and renatured in amphipol A8-35. The effect of different renaturation procedures and of the presence or absence of lipids and the cofactor retinal have been investigated. The resulting samples have been characterized by absorbance spectroscopy, size-exclusion chromatography, thermostability measurements, and determination of photocycle kinetics. Transfer to A8-35 can be achieved by SDS precipitation, dilution, or dialysis, the first route resulting in the highest yield of refolding. Functional BR can be refolded whether in the presence or absence of lipids, higher yields being achieved in their presence. Retinal is not required for the protein to refold, but it stabilizes the refolded form and, thereby, improves folding yields. Lipids are not required for BR to perform its complete photocycle, but their presence speeds up the return to the ground state. Taken together, these data indicate that a membrane or membrane-mimetic environment is not required for correct decoding of the chemical information contained in the sequence of BR; functional folding is possible even in the highly foreign environment of lipid-free amphipols. BR interactions with lipids, however, contribute to an effective photocycle.  相似文献   

5.
Detergents classically are used to keep membrane proteins soluble in aqueous solutions, but they tend to destabilize them. This problem can be largely alleviated thanks to the use of amphipols (APols), small amphipathic polymers designed to substitute for detergents. APols adsorb at the surface of the transmembrane region of membrane proteins, keeping them water-soluble while stabilizing them bio-chemically. Membrane protein/APol complexes have proven, however, difficult to crystallize. In this study, the composition and solution properties of complexes formed between mitochondrial cytochrome bc 1 and A8-35, the most extensively used APol to date, have been studied by means of size exclusion chromatography, sucrose gradient sedimentation, and small-angle neutron scattering. Stable, monodisperse preparations of bc 1/A8-35 complexes can be obtained, which, depending on the medium, undergo either repulsive or attractive interactions. Under crystallization conditions, diffracting three-dimensional crystals of A8-35-stabilized cytochrome bc 1 formed, but only in the concomitant presence of APol and detergent.  相似文献   

6.
Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EIImtl, a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EIImtl, some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EIImtl soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EIImtl mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EIImtl using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.  相似文献   

7.
Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.  相似文献   

8.
Amphipols (APol) are polymers which can solubilise and stabilise membrane proteins (MP) in aqueous solutions. In contrast to conventional detergents, APol are able to keep MP soluble even when the free APol concentration is very low. Outer membrane protein F (OmpF) is the most abundant MP commonly found in the outer membrane (OM) of Escherichia coli. It plays a vital role in the transport of hydrophilic nutrients, as well as antibiotics, across the OM. In the present study, APol was used to solubilise OmpF to characterize its interactions with molecules such as lipopolysaccharides (LPS) or colicins. OmpF was reconstituted into APol by the removal of detergents using Bio-Beads followed by size-exclusion chromatography (SEC) to remove excess APol. OmpF/APol complexes were then analysed by SEC, dynamic light scattering (DLS) and transmission electron microscopy (TEM). TEM showed that in the absence of free APol–OmpF associated as long filaments with a thickness of ~6 nm. This indicates that the OmpF trimers lie on their sides on the carbon EM grid and that they also favour side by side association. The formation of filaments requires APol and occurs very rapidly. Addition of LPS to OmpF/APol complexes impeded filament formation and the trimers form 2D sheets which mimic the OM. Consequently, free APol is undoubtedly required to maintain the homogeneity of OmpF in solutions, but ‘minimum APol’ provides a new phase, which can allow weaker protein–protein and protein–lipid interactions characteristic of native membranes to take place and thus control 1D–2D crystallisation.  相似文献   

9.
Amphipols (APols) are polymeric surfactants that keep membrane proteins (MPs) water-soluble in the absence of detergent, while stabilizing them. They can be used to deliver MPs and other hydrophobic molecules in vivo for therapeutic purposes, e.g., vaccination or targeted delivery of drugs. The biodistribution and elimination of the best characterized APol, a polyacrylate derivative called A8–35, have been examined in mice, using two fluorescent APols, grafted with either Alexa Fluor 647 or rhodamine. Three of the most common injection routes have been used, intravenous (IV), intraperitoneal (IP), and subcutaneous (SC). The biodistribution has been studied by in vivo fluorescence imaging and by determining the concentration of fluorophore in the main organs. Free rhodamine was used as a control. Upon IV injection, A8–35 distributes rapidly throughout the organism and is found in most organs but the brain and spleen, before being slowly eliminated (10–20 days). A similar pattern is observed after IP injection, following a brief latency period during which the polymer remains confined to the peritoneal cavity. Upon SC injection, A8–35 remains essentially confined to the point of injection, from which it is only slowly released. An interesting observation is that A8–35 tends to accumulate in fat pads, suggesting that it could be used to deliver anti-obesity drugs.  相似文献   

10.
Bacteriorhodopsin (BR) essentially free of native lipids has been prepared in a highly stable state. Purple membrane was solubilized in Triton X-100 and BR was purified by size exclusion chromatography using 3-[cholamidopropyl)dimethylammonio]-2-hydroxyl-1-propanesulfonic acid (CHAPSO) detergent at pH 5. Molar ratios of phospholipid/BR ranged from 0.4 to 0.05 corresponding to 94-98% phospholipid removal. Purified BR has an absorbance ratio (A280nm/A548nm) of 1.5-1.6 in the dark-adapted state which is the highest purified BR/protein ratio reported to date. The purified BR in CHAPSO shows maximum stability in the pH range 5.0-5.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of native purple membrane and solubilized BR from most Halobacterium halobium JW-3 cultures show 3 higher molecular weight bands in addition to BR. Immunological staining and amino acid sequencing indicates that these additional proteins are partially processed forms of the BR precursor protein. The BR preprotein contains 13 additional amino acids on the NH2 terminus which are removed by post-translational processing in at least four steps. Isoelectric focusing separated most delipidated and non-delipidated BR samples into 8 bands. Incomplete BR post-translational processing BR is thought to be largely responsible for the multiplicity of isoelectric BR species. The principal components have pI values of 5.20 and 5.24 and both have absorption maxima at 550 nm, characteristic of detergent-solubilized BR. BR in Triton X-100 or nonylglucoside, delipidated BR in CHAPSO, and BR in intact purple membrane all have a dark-adapted ratio of 13-cis to all-trans-retinal of 1.9:1.  相似文献   

11.
Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55–64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1–2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5–9 kJ/mol for the fast process and ~29–37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.  相似文献   

12.
Circular dichroic (CD) spectra of three related protein pigments from Halobacterium halobium, halorhodopsin (HR), bacteriorhodopsin (BR), and sensory rhodopsin I (SR-I), are compared. In native membranes the two light-driven ion pumps, HR and BR, exhibit bilobe circular dichroism spectra characteristic of exciton splitting in the region of retinal absorption, while the phototaxis receptor, SR-I, exhibits a single positive band centered at the SR-I absorbance maximum. This indicates specific aggregation of protein monomers of HR, as previously noted [Sugiyama, Y., & Mukohata, Y. (1984) J. Biochem. (Tokyo) 96, 413-420], similar to the well-characterized retinal/retinal exciton interaction in the purple membrane. The absence of this interaction in SR-I indicates SR-I is present in the native membrane as monomers or that interactions between the retinal chromophores are weak due to chromophore orientation or separation. Solubilization of HR and BR with nondenaturing detergents eliminates the exciton coupling, and the resulting CD spectra share similar features in all spectral regions from 250 to 700 nm. Schiff-base deprotonation of both BR and HR yields positive CD bands near 410 nm and shows similar fine structure in both pigments. Removal of detergent restores the HR native spectrum. HR differs from BR in that circular dichroic bands corresponding to both amino acid and retinal environments are much more sensitive to external salt concentration and pH. A theoretical analysis of the exciton spectra of HR and BR that provides a range of interchromophore distances and orientations is performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Amphiphilic macromolecules, known as amphipols, have emerged as promising candidates to replace conventional detergents for handling integral membrane proteins in water due to the enhanced stability of protein/amphipol complexes as compared to protein/detergent complexes. The limited portfolio of amphipols currently available prompted us to develop amphipols bearing phosphorylcholine-based units (PC). Unlike carboxylated polymers, PC-amphipols remain soluble in aqueous media under conditions of low pH, high salt concentration, or in the presence of divalent ions. The solubilizing properties of four PC-amphipols were assessed in the case of two membrane proteins, cytochrome b6f and bacteriorhodopsin. The protein/PC-amphipol complexes had a low dispersity in size, as determined by rate zonal ultracentrifugation. Short PC-amphipols (<M>≈ 22 kDa) of low dispersity in length, containing ∼ 30 mol% octyl side groups, ∼ 35 mol% PC-groups, and ∼ 35 mol% isopropyl side groups, appeared best suited to form stable complexes, preserving the native state of BR over periods of several days. BR/PC-amphipol complexes remained soluble in aqueous media at pH ≥ 5, as well as in the presence of 1 M NaCl or 12 mM calcium ions. Results from isothermal titration calorimetry indicated that the energetics of the conversion of BR/detergent complexes into BR/amphipol complexes are similar for PC-amphipols and carboxylated amphiphols.  相似文献   

14.
Amphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded β-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.  相似文献   

15.
Amphiphilic macromolecules, known as amphipols, have emerged as promising candidates to replace conventional detergents for handling integral membrane proteins in water due to the enhanced stability of protein/amphipol complexes as compared to protein/detergent complexes. The limited portfolio of amphipols currently available prompted us to develop amphipols bearing phosphorylcholine-based units (PC). Unlike carboxylated polymers, PC-amphipols remain soluble in aqueous media under conditions of low pH, high salt concentration, or in the presence of divalent ions. The solubilizing properties of four PC-amphipols were assessed in the case of two membrane proteins, cytochrome b(6)f and bacteriorhodopsin. The protein/PC-amphipol complexes had a low dispersity in size, as determined by rate zonal ultracentrifugation. Short PC-amphipols ( approximately 22 kDa) of low dispersity in length, containing approximately 30 mol% octyl side groups, approximately 35 mol% PC-groups, and approximately 35 mol% isopropyl side groups, appeared best suited to form stable complexes, preserving the native state of BR over periods of several days. BR/PC-amphipol complexes remained soluble in aqueous media at pH> or =5, as well as in the presence of 1 M NaCl or 12 mM calcium ions. Results from isothermal titration calorimetry indicated that the energetics of the conversion of BR/detergent complexes into BR/amphipol complexes are similar for PC-amphipols and carboxylated amphiphols.  相似文献   

16.
Amphipols (APols) are amphiphatic polymers that keep membrane proteins (MPs) water-soluble. The best characterized and most widely used APol to date, A8-35, comprises a polyacrylate backbone grafted with octyl- and isopropylamine side chains. The nature of its hydrophilic moieties prevents its use at the slightly acidic pH that is desirable to slow down the rate of amide proton exchange in solution NMR studies. We describe here the synthesis and properties of pH-insensitive APols obtained by replacing isopropyles with taurine. Sulfonated APols (SAPols) can be used to trap MPs in the form of small complexes, to stabilize them, and to keep them water-soluble even at low pH. [(15) N,(1) H]-transverse relaxation-optimized spectroscopy NMR spectra obtained at pH 6.8 of a bacterial outer MP folded in SAPols show that the protein is correctly folded. The spectra have a resolution similar to that achieved with A8-35 and reveal water-exposed amide and indole protons whose resonance peaks are absent at pH 8.0.  相似文献   

17.
18.
Conjugation of natural bilirubin (BR) depends on a hepatic microsomal UDP-glycosyltransferase using UDP-Glc, UDP-xylose, and predominantly UDP-GlcA. We found that esterification of BR occurred when washed intact microsomes derived from rat or guinea pig liver were incubated with BR in the absence of added UDP-sugar. This endogenous esterification was shown to lead predominantly to formation of the two positional isomers of BR monoglucoside and displayed the same regioselectivity as found for the BR monoglucosides formed by microsomes incubated with a saturating concentration of added UDP-Glc. This finding and absence of endogenous esterification in liver microsomes from mutant rats lacking BR UDP-glycosyltransferase activities demonstrated that endogenous esterification depended on UDP-glycosyltransferase and indicated, therefore, that UDP-Glc was present in the intact microsomal vesicles. With UDP-Glc added to the extramicrosomal incubation medium, BR glucosidation was markedly enhanced when the membrane permeability barrier was disrupted by pretreatment of the microsomes with detergent, sonication, or Staphylococcus aureus alpha-toxin. In contrast, such membrane disruption resulted in abolishment of endogenous esterification of BR, and a direct relationship was found between impairment of endogenous esterification and degree of vesicle disruption, suggesting that the UDP-Glc on which endogenous esterification depended was present in the lumenal space of the microsomes. Kinetic evidence and absence of an effect of increasing the microsomal concentration of dolichol-P-Glc (Dol-P-Glc) on endogenous esterification excluded direct or indirect involvement of Dol-P-Glc in the endogenous esterification reaction. Preincubation of intact microsomes with UDP-Glc or UDP-xylose at 37 degrees C, but not at 0 degrees C, led to expansion of the microsomal UDP-sugar pool on which endogenous esterification depended, suggesting that both UDP-sugars can enter the microsomal vesicles by a temperature-dependent mechanism. In contrast to these findings, no increase of BR esterification was detected when the microsomes had been preincubated at 37 degrees C with UDP-GlcA. We conclude that native, intact microsomes contain a lumenal pool of endogenous UDP-Glc and that BR UDP-glucosyltransferase and UDP-xylosyltransferase, by virtue of a lumenal orientation, have direct access to the postulated intramicrosomal pool of nucleotide sugar.  相似文献   

19.
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.  相似文献   

20.
We isolated calcium-labile mitotic spindles from eggs of the sea urchin Lytechinus variegatus, using a low ionic strength, EGTA lysis buffer that contined 5.0 mM EGTA, 0.5 mM MgCl2, 10-50 mM PIPES, pH 6.8, with 1% Nonidet P-40 (detergent) and 20-25% glycerol. Isolated spindles were stored in EGTA buffer with 50% glycerol for 5-6 wk without deterioration. The isolated spindles were composed primarily of microtubules with the chromosomes attached. No membranes were seen. Isolated spindles, perfused with EGTA buffer to remove the detergent and glycerol, had essentially the same birefringent retardation (BR) as spindles in vivo at the same mitotic stage. Even in the absence of glycerol and exogenous tubulin, the isolated spindles were relatively stable in the EGTA buffer: BR decayed slowly to about half the initial value within 30-45 min. However, both the rate and extent of BR decay increased with concentrations of Ca2+ above 0.2-0.5 muM as assayed using Ca-EGTA buffers (0.2 mM EGTA, 0.5 mM MgCl2, 50 mM PIPES, pH 6.8, plus various amounts of CaCl2). Microtubules depolymerized almost completely in < 6 min at Ca2+ concentrations of 2 muM and within several seconds at 10 muM Ca2+. Of several divalent cations tested, only Sr2+ caused comparable changes in BR. The absence of membranes in the isolated spindles appeared to be associated with a lack of calcium- sequestering ability. Our results suggest that calcium ions play an important role in the depolymerization of spindle microtubules and that membrane components may function within the mitotic apparatus of living cells to sequester and release calcium ions during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号