首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mode of action of the lipopeptide SF with zwitterionic and negatively charged model membranes has been investigated with solid-state NMR, light scattering, and electron microscopy. It has been found that this acidic lipopeptide (negatively charged) induces a strong destabilization of negatively charged micrometer-scale liposomes, leading to the formation of small unilamellar vesicles of a few 10s of nanometers. This transformation is detected for very low doses of SF (Ri = 200) and is complete for Ri = 50. The phenomenon has been observed for several membrane mixtures containing phosphatidylglycerol or phosphatidylserine. The vesicularization is not observed when the lipid negative charges are neutralized and a cholesterol-like effect is then evidenced, i.e., increase of gel membrane dynamics and decrease of fluid membrane microfluidity. The mechanism for small vesicle formation thus appears to be linked to severe changes in membrane curvature and could be described by a two-step action: 1), peptide insertion into membranes because of favorable van der Waals forces between the rather rigid cyclic and lipophilic part of SF and lipid chains and 2), electrostatic repulsion between like charges borne by lipid headgroups and the negatively charged SF amino acids. This might provide the basis for a novel mode of action of negatively charged lipopeptides.  相似文献   

2.
Gene therapy is expected to lead to powerful new approaches for curing many diseases, a potential that is currently explored in worldwide clinical trials. Nonviral DNA delivery systems are desirable to overcome the inherent problems of viral vectors, but their current efficiency requires improvement and the understanding of their mechanism of action is incomplete. We have synthesized new multivalent cationic lipids with highly charged dendritic headgroups to probe the structure-transfection efficiency relationships of cationic liposome (CL)-DNA complexes, a prevalent nonviral vector. The lipid headgroups are constructed from ornithine cores and ornithine or carboxyspermine endgroups. The dendritic lipids were prepared on a gram scale, using a synthetic scheme that permits facile variation of the lipid building blocks headgroup, spacer, and hydrophobic moiety. They carry four to sixteen positive charges in their headgroups. Complexes of DNA with mixtures of the dendritic lipids and neutral 1,2-dioleoyl-sn-glycero phosphatidylcholine (DOPC) exhibit novel structures at high contents of the highly charged lipids, while the well-known lamellar phase is formed at high contents of DOPC. DNA complexes of the new dendritic lipids efficiently transfect mammalian cells in culture without cytotoxicity and, in contrast to lamellar complexes, maintain high transfection efficiency over a broad range of composition.  相似文献   

3.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

4.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

5.
Collective action by inverse-Bin/Amphiphysin/Rvs (I-BAR) domains drive micron-scale membrane remodeling. The macroscopic curvature sensing and generation behavior of I-BAR domains is well characterized, and computational models have suggested various mechanisms on simplified membrane systems, but there remain missing connections between the complex environment of the cell and the models proposed thus far. Here, we show a connection between the role of protein curvature and lipid clustering in the relaxation of large membrane deformations. When we include phosphatidylinositol 4,5-bisphosphate-like lipids that preferentially interact with the charged ends of an I-BAR domain, we find clustering of phosphatidylinositol 4,5-bisphosphate-like lipids that induce a directional membrane-mediated interaction between membrane-bound I-BAR domains. Lipid clusters mediate I-BAR domain interactions and cause I-BAR domain aggregates that would not arise through membrane fluctuation-based or curvature-based interactions. Inside of membrane protrusions, lipid cluster-mediated interaction draws long side-by-side aggregates together, resulting in more cylindrical protrusions as opposed to bulbous, irregularly shaped protrusions.  相似文献   

6.
Madine J  Doig AJ  Middleton DA 《Biochemistry》2006,45(18):5783-5792
Associations between the protein alpha-synuclein (alpha-syn) and presynaptic vesicles have been implicated in synaptic plasticity and neurotransmitter release and may also affect how the protein aggregates into fibrils found in Lewy bodies, the cellular inclusions associated with neurodegenerative diseases. This work investigated how alpha-syn interacts with model phospholipid membranes and examined what effect protein binding has upon the physical properties of lipid bilayers. Wide line 2H and 31P NMR spectra of phospholipid vesicles revealed that alpha-syn associates with membranes containing lipids with anionic headgroups and can disrupt the integrity of the lipid bilayer, but the protein has little effect on membranes of zwitterionic phosphatidylcholine. A peptide, alpha-syn(10-48), which corresponds to the lysine-rich N-terminal region of alpha-syn, was found to associate with lipid headgroups with a preference for a negative membrane surface charge. Another peptide, alpha-syn(120-140), which corresponds to the glutamate-rich C-terminal region, also associates weakly with lipid headgroups but with a slightly higher affinity for membranes with no net surface charge than for negatively charged membrane surfaces. Binding of alpha-syn(10-48) and alpha-syn(120-140) to the lipid vesicles did not disrupt the lamellar structure of the membranes, but both peptides appeared to induce the lateral segregation of the lipids into clusters of acidic lipid-enriched and acidic lipid-deficient domains. From these findings, it is speculated that the N-terminal and C-terminal domains of full-length alpha-syn might act in concert to organize the membrane components during normal protein function and perhaps play a role in presynaptic vesicle synthesis, maintenance, and fusion.  相似文献   

7.
Charged lipids constitute a substantial fraction of all membrane lipids. Their charges vary in quantity and distribution within their headgroup regions. In long range interactions, their charges' value and electrostatic potential in the vicinity of the membrane surface can be approximated by the Guy-Chapman theory. This theory treats the interface as a charged structureless plain surrounded by uniform environments. However, if one considers intermolecular interactions, such assumptions need to be revised. The interface is in reality a thick region containing the residual charges of lipid headgroups. Their arrangement depends on the type of lipid present in the membrane. The variety of lipids and their biological functions suggests that charge distribution determines the extent and type of interaction with surface associated molecules. Numerous examples show that protein behavior at the lipid bilayer surface is determined by the type of lipid present, indicating protein specificity towards certain surface locations and local properties (determined by lipid composition) of a particular type. Such specificity is achieved by a combination of electrostatic, hydrophobic and enthropic effects. Comparing lipid biological activity, it can be stated that residual charge distribution is one of the factors of intermolecular recognition leading to the specific interaction of lipid molecules and selected proteins in various processes, particularly those involved with signal transduction pathways. Such specificity enables a variety of processes occurring simultaneously on the same membrane surface to function without cross-reaction interference.  相似文献   

8.
Anionic palmitoyloleoylphosphatidylglycerol (POPG) is one of the most abundant lipids in nature, yet its atomic-scale properties have not received significant attention. Here we report extensive 150-ns molecular dynamics simulations of a pure POPG lipid membrane with sodium counterions. It turns out that the average area per lipid of the POPG bilayer under physiological conditions is approximately 19% smaller than that of a bilayer built from its zwitterionic phosphatidylcholine analog, palmitoyloleoylphosphatidylcholine. This suggests that there are strong attractive interactions between anionic POPG lipids, which overcome the electrostatic repulsion between negative charges of PG headgroups. We demonstrate that interlipid counterion bridges and strong intra- and intermolecular hydrogen bonding play a key role in this seemingly counterintuitive behavior. In particular, the substantial strength and stability of ion-mediated binding between anionic lipid headgroups leads to complexation of PG molecules and ions and formation of large PG-ion clusters that act in a concerted manner. The ion-mediated binding seems to provide a possible molecular-level explanation for the low permeability of PG-containing bacterial membranes to organic solvents: highly polar interactions at the water/membrane interface are able to create a high free energy barrier for hydrophobic molecules such as benzene.  相似文献   

9.
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.  相似文献   

10.
Using molecular dynamics simulations, we studied the mode of association of the cell-penetrating peptide penetratin with both a neutral and a charged bilayer. The results show that the initial peptide-lipid association is a fast process driven by electrostatic interactions. The homogeneous distribution of positively charged residues along the axis of the helical peptide, and especially residues K46, R53, and K57, contribute to the association of the peptide with lipids. The bilayer enhances the stability of the penetratin helix. Oriented parallel to the lipid-water interface, the subsequent insertion of the peptide through the bilayer headgroups is significantly slower. The presence of negatively charged lipids considerably enhances peptide binding. Lateral side-chain motion creates an opening for the helix into the hydrophobic core of the membrane. The peptide aromatic residues form a pi-stacking cluster through W48/R52/W56 and F49/R53, protecting the peptide from the water phase. Interaction with the penetratin peptide has only limited effect on the overall membrane structure, as it affects mainly the conformation of the lipids which interact directly with the peptide. Charge matching locally increases the concentration of negatively charged lipids, lateral lipid diffusion locally decreases. Lipid disorder increases, through decreased order parameters of the lipids interacting with the penetratin side chains. Penetratin molecules at the membrane surface do not seem to aggregate.  相似文献   

11.
Influence of charge and molecular size on membrane stabilization   总被引:1,自引:0,他引:1  
We have reported that the antihaemolytic effect of low concentrations of chlorpromazine is decreased after enzymic removal of sialopeptides from red cell membranes, suggesting that an interaction between negatively charged sialic acids and positively charged chlorpromazine is involved in its membrane stabilizing effect. We have now investigated the antihaemolytic action of simpler molecules with different charges Removal of membrane sialopeptides did not affect the membrane stabilizing actions of simple aliphatic mono- or diamines nor of similar aliphatic molecules carrying strong positive or negative charges, where those positively charged were more potent than those with negative charges. It appears, therefore, that membrane stabilizing activity is determined primarily by lipophilicity and secondarily by polarity and that it does not depend on interactions with enzymically accessible sialopeptides on the outer surface of biological membranes.  相似文献   

12.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

13.
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.  相似文献   

14.
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.  相似文献   

15.
Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.  相似文献   

16.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

17.
The electrostatic potential of Escherichia coli dihydrofolate reductase   总被引:2,自引:0,他引:2  
Escherichia coli dihydrofolate reductase (DHFR) carries a net charge of -10 electrons yet it binds ligands with net charges of -4 (NADPH) and -2 (folate or dihydrofolate). Evaluation and analysis of the electrostatic potential of the enzyme give insight as to how this is accomplished. The results show that the enzyme is covered by an overall negative potential (as expected) except for the ligand binding sites, which are located inside "pockets" of positive potential that enable the enzyme to bind the negatively charged ligands. The electrostatic potential can be related to the asymmetric distribution of charged residues in the enzyme. The asymmetric charge distribution, along with the dielectric boundary that occurs at the solvent-protein interface, is analogous to the situation occurring in superoxide dismutase. Thus DHFR is another case where the shape of the active site focuses electric fields out into solution. The positive electrostatic potential at the entrance of the ligand binding site in E. coli DHFR is shown to be a direct consequence of the presence of three positively charged residues at positions 32, 52, and 57--residues which have also been shown recently to contribute significantly to electronic polarization of the ligand folate. The latter has been postulated to be involved in the catalytic process. A similar structural motif of three positively charged amino acids that gives rise to a positive potential at the entrance to the active site is also found in DHFR from chicken liver, and is suggested to be a common feature in DHFRs from many species. It is noted that, although the net charges of DHFRs from different species vary from +3 to -10, the enzymes are able to bind the same negatively charged ligands, and perform the same catalytic function.  相似文献   

18.
We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.  相似文献   

19.
Apolipoprotein A-I (ApoA-I) is a protein implicated in the solubilization of lipids and cholesterol from cellular membranes. The study of ApoA-I in phospholipid (PL) monolayers brings relevant information about ApoA-I/PL interactions. We investigated the influence of PL charge and acyl chain organization on the interaction with ApoA-I using dipalmitoyl-phosphatidylcholine, dioleoyl-phosphatidylcholine and dipalmitoyl-phosphatidylglycerol monolayers coupled to ellipsometric, surface pressure, atomic force microscopy and infrared (polarization modulation infrared reflection-absorption spectroscopy) measurements. We show that monolayer compressibility is the major factor controlling protein insertion into PL monolayers and show evidence of the requirement of a minimal distance between lipid headgroups for insertion to occur, Moreover, we demonstrate that ApoA-I inserts deepest at the highest compressibility of the protein monolayer and that the presence of an anionic headgroup increases the amount of protein inserted in the PL monolayer and prevents the steric constrains imposed by the spacing of the headgroup. We also defined the geometry of protein clusters into the lipid monolayer by atomic force microscopy and show evidence of the geometry dependence upon the lipid charge and the distance between headgroups. Finally, we show that ApoA-I helices have a specific orientation when associated to form clusters and that this is influenced by the character of PL charges. Taken together, our results suggest that the interaction of ApoA-I with the cellular membrane may be driven by a mechanism that resembles that of antimicrobial peptide/lipid interaction.  相似文献   

20.
Summary The major permeability pathways of the outer mitochondrial membrane are the voltage-gated channels called VDAC. It is known that the conductance of these channels decreases as the transmembrane voltage is increased in the positive or negative direction. These channels are known to display a preference for anions over cations of similar size and valence. It was proposed (Doring & Colombini, 1985b) that a set of positive charges lining the channel may be responsible for both voltage dependence and selectivity. A prediction of this proposal is that progressive replacement of the positive charges with negative charges should at first diminish, and then restore, voltage dependence. At the same time, the channel's preference for anions over cations should diminish then reverse. Succinic anhydride was used to perform these experiments as it replaces positively charged amino groups with negatively charged carboxyl groups. When channels, which had been inserted into phospholipid membranes, were treated with moderate amounts of the anhydride, they lost their voltage dependence and preference for anions. With further succinylation, voltage dependence was regenerated while the channels became cation selective. The voltage needed to close one-half of the channels increased in those treatments in which voltage dependence was diminished. As voltage dependence was restored, the voltage needed to close half of the channels decreased. The energy difference between the open and closed state in the absence of an applied field changed little with succinylation, indicating that the procedure did not cause large changes in VDAC's structure but specifically altered those charges responsible for voltage gating and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号