首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the translocation of the NADPH oxidase components p67(phox) and Rac2 was studied during phagocytosis in living cells. For this purpose, green fluorescent protein (GFP)-tagged versions of these proteins were expressed in the myeloid cell line PLB-985. First, the correct localization of p67GFP and GFP-Rac2 was shown during phagocytosis of serum-treated zymosan by wild-type PLB-985 cells and PLB-985 X-CGD (chronic granulomatous disease) cells, which lack expression of flavocytochrome b(558). Subsequently, these constructs were used for fluorescence recovery after photobleaching studies to elucidate the turnover of these proteins on the phagosomal membrane. The turnover of p67GFP and GFP-Rac2 proved to be very high, indicating a continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic, free p67GFP and GFP-Rac2. Furthermore, the importance of an intact actin cytoskeleton for correct localization of these proteins was investigated by disrupting the actin cytoskeleton with cytochalasin B. However, cytochalasin B treatment of PLB-985 cells did not alter the localization of p67GFP and GFP-Rac2 once phagocytosis was initiated. In addition, the continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic p67GFP and GFP-Rac2 was still intact in cytochalasin B-treated cells, indicating that the translocation of these proteins does not depend on a rearrangement of the actin cytoskeleton.  相似文献   

2.
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. The most common form is caused by mutations in the CYBB gene encoding gp91phox protein, the heavy chain of cytochrome b558, which is the redox element of NADPH oxidase. In some rare cases, the mutated gp91phox is normally expressed but no NADPH oxidase can be detected. This type of CGD is called X91+ CGD. We have previously reported an X+ CGD case with a double-missense mutation in gp91phox. Transgenic PLB-985 cells have now been made to study the impact of each single mutation on oxidase activity and assembly to rule out a possible new polymorphism in the CYBB gene. The His303Asn/Pro304Arg gp91phox transgenic PLB-985 cells exactly mimic the phenotype of the neutrophils of the X+ CGD patient. The His303Asn mutation is sufficient to inhibit oxidase activity in intact cells and in a broken cell system, whereas in the Pro304Arg mutant, residual activity suggests that the Pro304Arg substitution is less devastating to oxidase activity than the His303Asn mutation. The study of NADPH oxidase assembly following the in vitro and in vivo translocation of cytosolic factors p47phox and p67phox has demonstrated that, in the double mutant and in the His303Asn mutant, NADPH oxidase assembly is abolished, although the translocation is only attenuated in Pro304Arg mutant cells. Thus, even though the His303Asn mutation has a more severe inhibitory effect on NADPH oxidase activity and assembly than the Pro304Arg mutation, neither mutation can be considered as a polymorphism.Clara Bionda and Xing Jun Li contributed equally to this work  相似文献   

3.
In phagocytes, superoxide anion (O2), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme.To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1–286), p67phox(aa 1–212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.  相似文献   

4.
Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future.  相似文献   

5.
BACKGROUND: Wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM) is an established technique to determine fluorescence lifetimes. Disadvantage of wide-field imaging is that measurements are compromised by out-of-focus blur. Conventional scanning confocal typically means long acquisition times and more photo bleaching. An alternative is spinning-disc confocal whereby samples are scanned simultaneously by thousands of pinholes, resulting in a virtually instantaneous image with more than tenfold reduced photo bleaching. METHODS: A spinning disc unit was integrated into an existing FLIM system. Measurements were made of fluorescent beads with a lifetime of 2.2 ns against a 5.3 ns fluorescent background outside the focal plane. In addition, living HeLa cells were imaged with different lifetimes in the cytosol and the plasma membrane. RESULTS: In spinning-disc mode, a lifetime of the beads of 2.8 ns was measured, whereas in wide field a lifetime of 4.1 ns was measured. Lifetime contrast within living HeLa cells could be resolved with the spinning-disc unit, where this was impossible in wide field. CONCLUSIONS: Integration of a spinning-disc unit into a frequency-domain FLIM instrument considerably reduces artifacts, while maintaining the advantages of wide field. For FLIM on objects with 3D lifetime structure, spinning-disc is by far preferable over wide-field measurements.  相似文献   

6.
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2?-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called ‘Trimera’, composed of the essential domains of the cytosolic proteins p47phox (aa 1–286), p67phox (aa 1–212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.  相似文献   

7.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

8.
We have previously established a model of cytosolic phospholipase A(2) (cPLA(2))-deficient differentiated PLB-985 cells (PLB-D cells) and demonstrated that cPLA(2)-generated arachidonic acid (AA) is essential for NADPH oxidase activation. In this study we used this model to investigate the physiological role of cPLA(2) in regulation of NADPH oxidase-associated diaphorase activity. A novel diaphorase activity assay, using 4-iodonitrotetrazolium violet as an electron acceptor, was used in permeabilized neutrophils and PLB-985 cells differentiated toward the granulocytic or monocytic phenotypes. Phorbol 12-myristate 13-acetate, guanosine 5'-3-O- (thio)triphosphate (GTP gamma S), or FMLP stimulated a similar diphenylene iodonium-sensitive diaphorase activity pattern in neutrophils and in differentiated parent PLB-985 cells. This diaphorase activity was not detected in undifferentiated cells, but developed during differentiation. Furthermore, diaphorase activity could not be stimulated in permeabilized neutrophils from X-linked CGD patients and in differentiated gp91(phox)-targeted PLB-985 cells that lacked normal expression of gp91(phox), but was restored to these cells following transduction with retrovirus encoding gp91(phox). The differentiated PLB-D cells showed no diaphorase activity when stimulated by either GTP gamma S or FMLP, and only partial activation when stimulated with phorbol 12-myristate 13-acetate. Diaphorase activity in response to either agonists was fully restored by the addition of 10 microm free AA. The permeabilized cell 4-iodonitrotetrazolium violet reduction assay offers a unique tool for the evaluation of NADPH oxidase-associated diaphorase activity in stimulated whole cells. These results establish an essential and specific physiological requirement of cPLA(2)-generated AA in activation of electron transfer through the FAD reduction center of NADPH oxidase.  相似文献   

9.
BACKGROUND: Frequency-domain fluorescence lifetime imaging microscopy (FLIM) is finding increasing use in the analysis of biological systems. However, the calibration, determination of resolvable lifetime differences, and evaluation of artifacts have not been extensively treated. We describe a multi-point method for calibrating a frequency-domain FLIM system, characterize the minimum detectable heterogeneity and intra- and inter-image lifetime differences, discuss the statistical treatment of FLIM data, and suggest methods for minimizing artifacts. METHODS: A set of solutions exhibiting single-component lifetimes suffice for accurately calibrating a reference material with a single-component lifetime, even in the absence of accurate data on the lifetimes of the individual solutions or the reference material. We used a set of rhodamine 6G solutions quenched with varying concentrations of iodide, leading to lifetimes of 0.5--4.0 ns, to calibrate a 1 microM reference solution of rhodamine 6G in water. RESULTS: We measured a value of 4.11 ns with an estimated absolute error of +/-0.05 ns for the rhodamine 6G reference solution. With 57.7 MHz modulation, the minimum detectable inter-image lifetime difference was 0.1--0.15 ns and the minimum detectable intra-image lifetime difference was 4--5 ps, allowing solutions differing in lifetime by 40 and 70 ps to be easily distinguished. The minimum detectable lifetime heterogeneity was 50--80 ps. Evaluation of replicate measurements of single solutions demonstrated that inter-image instrument errors exceeded those predicted from intra-image statistics by more than an order of magnitude. We also measured lifetimes and heterogeneity in 4 GFP variants (WTGFP, EGFP, S65T, and EYFP) with the technique. CONCLUSION: The multi-point calibration method is applicable to any system consisting of single-component lifetimes. Applying the method in our FLIM microscope allowed us to demonstrate a previously unreported degree of lifetime resolution in a FLIM microscope. Cytometry 43:248-260;2001.  相似文献   

10.
Assembly of the phagocyte NADPH oxidase   总被引:5,自引:5,他引:0  
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.  相似文献   

11.
The NADPH-oxidase of phagocytic cells is a multicomponent enzyme that generates superoxide. It comprises a membrane flavocytochrome b558 and four cytosolic proteins; p67phox, p47phox, p40phox and Rac. The NADPH-binding site of this complex was shown to be located on the flavocytochrome b558. However, a number of studies have suggested the presence of another site on the p67phox subunit which is the key activating component. Using several approaches like tryptophan quenching fluorescence measurement, inhibition by 2′,3′-dialdehyde NADPH, and free/bound NADPH concentration measurements, we demonstrate that no NADPH binds on p67phox, thus definitively solving the controversy on the number and location of the NADPH-binding sites on this complex.  相似文献   

12.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

13.
The membrane-bound NADPH oxidase in phagocytes, gp91phox (a.k.a. Nox2), produces superoxide, a precursor of microbicidal oxidants, thereby playing a crucial role in host defense. Activation of gp91phox/Nox2 requires assembly with the cytosolic proteins p67phox and p47phox, each containing two SH3 domains. Although the C-terminal SH3 domain of p67phox is responsible for binding to p47phox, little is known about the role for the first (N-terminal) SH3 domain [SH3(N)]. Here we show that truncation of p67phox-SH3(N), but not substitution of arginine for the invariant residue Trp-277 in SH3(N), results in an impaired activation of gp91phox/Nox2. The impairment is overcome by higher expression of an SH3(N)-defective p67phox in cells, suggesting that SH3(N) primarily increases the affinity of p67phox for the oxidase complex. On the other hand, p67phox-SH3(N) is not involved in activation of Nox1 and Nox3, closely-related homologues of gp91phox/Nox2. Thus p67phox-SH3(N) specifically functions in gp91phox/Nox2 activation probably via facilitating oxidase assembly.  相似文献   

14.
NADPH oxidases (Nox) are membrane complexes that produce O2?. Researches in mammals, plants and fungi highlight the involvement of Nox‐generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91phox/Nox2 is associated with p22phox forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22phox gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22phox homologue as being mutated in the Podospora anserina mutant IDC509. Functional studies show that the fungal p22phox, PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91phox homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co‐localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system.  相似文献   

15.
During the "respiratory burst," the NADPH oxidase complex of phagocytes produces reactive oxygen species that kill bacteria and other invaders (Babior, B. M. (1999) Blood 93, 1464-1476). Electron efflux through NADPH oxidase is electrogenic (Henderson, L. M., Chappell, J. B., and Jones, O. T. G. (1987) Biochem. J. 246, 325-329) and is compensated by H(+) efflux through proton channels that reportedly are contained within the gp91(phox) subunit of NADPH oxidase. To test whether gp91(phox) functions as a proton channel, we studied H(+) currents in granulocytes from X-linked chronic granulomatous disease patients lacking gp91(phox) (X-CGD), the human myelocytic PLB-985 cell line, PLB-985 cells in which gp91(phox) was knocked out by gene targeting (PLB(KO)), and PLB-985 knockout cells re-transfected with gp91(phox) (PLB(91)). H(+) currents in unstimulated PLB(KO) cells had amplitude and gating kinetics similar to PLB(91) cells. Furthermore, stimulation with the phorbol ester phorbol 12-myristate 13-acetate increased H(+) currents to a similar extent in X-CGD, PLB(KO), and PLB(91) cells. Thus, gp91(phox) is not the proton channel in unstimulated phagocytes and does not directly mediate the increase of proton conductance during the respiratory burst. Changes in H(+) channel gating kinetics during NADPH oxidase activity are likely crucial to the activation of H(+) flux during the respiratory burst.  相似文献   

16.
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b559, a membrane-associated heterodimer composed of two subunits (Nox2 and p22phox), and four cytosolic proteins (p47phox, p67phox, Rac, and p40phox). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b559 and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47phox, p67phox, and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122–22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47phox-p67phox-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47phox phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp193 in p47phox persists. Prenylated GFP-p47phox-p67phox-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors.  相似文献   

17.
The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is hampered, however, by a high degree of spectral overlap, low quantum efficiencies and extinction coefficients [10], or rapid photobleaching [6]. Using fluorescence lifetime imaging microscopy (FLIM) [11] [12] [13] [14] [15] [16], four GFP variants were shown to have distinguishable fluorescence lifetimes. Among these was a new variant (YFP5) with spectral characteristics reminiscent of yellow fluorescent protein [8] and a comparatively long fluorescence lifetime. The fluorescence intensities of co-expressed spectrally similar GFP variants (either alone or as fusion proteins) were separated using lifetime images obtained with FLIM at a single excitation wavelength and using a single broad band emission filter. Fluorescence lifetime imaging opens up an additional spectroscopic dimension to wavelength through which novel GFP variants can be selected to extend the number of protein processes that can be imaged simultaneously in cells.  相似文献   

18.
Summary NADPH oxidase of phagocytic leucocytes contains a membrane cytochromeb with two subunits, gp91 phox and p22 phox , together with three cytosolic proteins, p47 phox , p67 phox and p2 rac . The presence of some of these components has been sought in non-phagocytes, using Western blot analysis for protein expression and PCR to amplify and detect mRNA. All components were detected in EBV-transformed B lymphocytes and peripheral blood B lymphocytes. Fibroblasts and human kidney mesangial cells contained mRNA for p67 phox , p47 phox , and p22 phox but not gp91 phox . Levels of expression varied with growth conditions, but it appears possible than an isozyme of cytochromeb which lacks gp9 phox is present in these cells. Proteins of p47 phox and p67 phox were expressed, in low concentrations, in these two cell types. Expression of mRNA for p47 phox and p67 phox was found to be widespread in many cell types.Abbreviations IL-1 interleukin 1 - PMA phorbol myristate acetate - CGD chronic granulomatous disease - EBV-BL Epstein-Barr virus transformed B-lymphocytes - PBBL peripheral blood B lymphocytes  相似文献   

19.
Persistent directional movement of neutrophils in shallow chemotactic gradients raises the possibility that cells can increase their sensitivity to the chemotactic signal at the front, relative to the back. Redistribution of chemoattractant receptors to the anterior pole of a polarized neutrophil could impose asymmetric sensitivity by increasing the relative strength of detected signals at the cell's leading edge. Previous experiments have produced contradictory observations with respect to receptor location in moving neutrophils. To visualize a chemoattractant receptor directly during chemotaxis, we expressed a green fluorescent protein (GFP)-tagged receptor for a complement component, C5a, in a leukemia cell line, PLB-985. Differentiated PLB-985 cells, like neutrophils, adhere, spread, and polarize in response to a uniform concentration of chemoattractant, and orient and crawl toward a micropipette containing chemoattractant. Recorded in living cells, fluorescence of the tagged receptor, C5aR-GFP, shows no apparent increase anywhere on the plasma membrane of polarized and moving cells, even at the leading edge. During chemotaxis, however, some cells do exhibit increased amounts of highly folded plasma membrane at the leading edge, as detected by a fluorescent probe for membrane lipids; this is accompanied by an apparent increase of C5aR-GFP fluorescence, which is directly proportional to the accumulation of plasma membrane. Thus neutrophils do not actively concentrate chemoattractant receptors at the leading edge during chemotaxis, although asymmetrical distribution of membrane may enrich receptor number, relative to adjacent cytoplasmic volume, at the anterior pole of some polarized cells. This enrichment could help to maintain persistent migration in a shallow gradient of chemoattractant.  相似文献   

20.
NADPH-oxidase activation and cognition in Alzheimer disease progression   总被引:1,自引:0,他引:1  
Superoxide production via NADPH-oxidase (NOX) has been shown to play a role in a variety of neurological disorders, including Alzheimer disease (AD). To improve our understanding of the NOX system and cognitive impairment, we studied the various protein components of the phagocytic isoform (gp91phox, or NOX2) in the frontal and temporal cortex of age- and postmortem-matched samples. Individuals underwent antemortem cognitive testing and postmortem histopathologic assessment to determine disease progression and assignment to one of the following groups: no cognitive impairment (NCI), preclinical AD, mild cognitive impairment (MCI), early AD, and mild-to-moderate AD. Biochemical methods were used to determine overall NOX activity as well as levels of the various subunits (gp91phox, p67phox, p47phox, p40phox, and p22phox). Overall enzyme activity was significantly elevated in the MCI cohort in both cortical regions compared to the NCI cohort. This activity level remained elevated in the AD groups. Only the NOX cytosolic subunit proteins (p67phox, p47phox, and p40phox ) were significantly elevated with disease progression; the membrane-bound subunits (gp91phox and p22phox) remained stable. In addition, there was a robust correlation between NOX activity and the individual's cognitive status such that as the enzyme activity increased, cognitive performance decreased. Collectively, these data show that upregulated NADPH-oxidase in frontal and temporal cortex suggests that increases in NOX-associated redox pathways might participate in early pathogenesis and contribute to AD progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号