首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human pluripotent stem cells have enormous potential value in neuropharmacology and drug discovery yet there is little data on the major classes and properties of receptors and ion channels expressed by neurons derived from these stem cells. Recent studies in this lab have therefore used conventional patch-clamp electrophysiology to investigate the pharmacological properties of the ligand and voltage-gated ion channels in neurons derived and maintained in vitro from the human stem cell (hSC) line, TERA2.cl.SP12.TERA2.cl.SP12 stem cells were differentiated with retinoic acid and used in electrophysiological experiments 28-50 days after beginning differentiation. HSC-derived neurons generated large whole cell currents with depolarizing voltage steps (−80 to 30 mV) comprised of an inward, rapidly inactivating component and a delayed, slowly deactivating outward component. The fast inward current was blocked by the sodium channel blocker tetrodotoxin (0.1 μM) and the outward currents were significantly reduced by tetraethylammonium ions (TEA, 5 mM) consistent with the presence of functional Na and K ion channels. Application of the inhibitory neurotransmitters, GABA (0.1-1000 μM) or glycine (0.1-1000 μM) evoked concentration dependent currents. The GABA currents were inhibited by the convulsants, picrotoxin (10 μM) and bicuculline (3 μM), potentiated by the NSAID mefenamic acid (10-100 μM), the general anaesthetic pentobarbital (100 μM), the neurosteroid allopregnanolone and the anxiolytics chlordiazepoxide (10 μM) and diazepam (10 μM) all consistent with the expression of GABAA receptors. Responses to glycine were reversibly blocked by strychnine (10 μM) consistent with glycine-gated chloride channels. The excitatory agonists, glutamate (1-1000 μM) and NMDA (1-1000 μM) activated concentration-dependent responses from hSC-derived neurons. Glutamate currents were inhibited by kynurenic acid (1 mM) and NMDA responses were blocked by MgCl2 (2 mM) in a highly voltage-dependent manner.Together, these findings show that neurons derived from human stem cells develop an array of functional receptors and ion channels with a pharmacological profile in keeping with that described for native neurons. This study therefore provides support for the hypothesis that stem cells may provide a powerful source of human neurons for future neuropharmacological studies.  相似文献   

2.
The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p < 0.05) compared to vehicle treated rats (4 ± 1, p < 0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p < 0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects.  相似文献   

3.
Acetylcholine sensitive TE 671 cells were cultured on nanoporous membranes and chemically stimulated by localized application of i), calcein-AM and ii), acetylcholine, respectively, onto the bottom face of the membrane employing an ink jet print head. Stimulus correlated response of cells was recorded by fluorescence microscopy with temporal and spatial resolution. Calcein fluorescence develops as a result of intracellular enzymatic conversion of calcein-AM, whereas Ca2+ imaging using fluo-4 dye was employed to visualize cellular response to acetylcholine stimulation. Using 25 pl droplets and substance concentration ranging from 10 μM to 1 mM on Nucleopore membranes with pore diameters between 50 nm and 1 μm, a resolution on the order of 50 μm was achieved.  相似文献   

4.
Cell adhesion mechanically couples cells to surfaces. The durability of individual bonds between the adhesive receptors and their ligands in the presence of forces determines the cellular adhesion strength. For adhesive receptors such as integrins, it is a common paradigm that the cell regulates its adhesion strength by altering the affinity state of the receptors. However, the probability distribution of rupture forces is dependent not only on the affinity of individual receptor-ligand bonds but also on the mechanical compliance of the cellular anchorage of the receptor. Hence, by altering the anchorage, the cell can regulate its adhesion strength without changing the affinity of the receptor. Here, we analyze the anchorage of the integrin VLA-4 with its ligand VCAM-1. For this purpose, we develop a model based on the Kelvin body, which allows one to quantify the mechanical properties of the adhesive receptor's anchorage using atomic force microscopy on living cells. As we demonstrate, the measured force curves give valuable insight into the mechanics of the cellular anchorage of the receptor, which is described by the tether stiffness, the membrane rigidity, and the membrane viscosity. The measurements relate to a tether stiffness of kt = 1.6 μN/m, an initial membrane rigidity of ki = 260 μN/m, and a viscosity of μ = 5.9 μN·s/m. Integrins exist in different activation states. When activating the integrin with Mg2+, we observe altered viscoelastic parameters of kt = 0.9 μN/m, ki = 190 μN/m, and μ = 6.0 μ N·s/m. Based on our model, we postulate that anchorage-related effects are common regulating mechanisms for cellular adhesion beyond affinity regulation.  相似文献   

5.
To define nanoflagellate-bacteria interactions and potential trophic levels within the microbial food web in the oligotrophic South China Sea, we conducted fourteen size-fractionation experiments in which seawater was filtered through 1, 2, 5, 10, 20, 60, and 200 μm membranes or meshes and the growth of four groups of picoplankton, Prochlorococcus, Synechococcus, high DNA heterotrophic bacteria, and low DNA heterotrophic bacteria were monitored in each filtrate after 24 hours of incubation. Removing grazers by filtration would relieve the grazing pressure on lower trophic levels which finally influenced the net growth rates of picoplankton. The growth patterns of Prochlorococcus and Synechococcus were similar, with higher growth rates in the < 1 μm or < 2 μm treatments, a second peak in the < 10 μm treatments and often a third peak in the < 200 μm treatments. The net growth rates of low DNA heterotrophic bacteria were little influenced by size-fractionation. Due to a subgroup of high DNA heterotrophic bacteria with larger size and higher DNA content which appeared to resist the grazing by < 5 μm nanoflagellates, the net growth rates of high DNA heterotrophic bacteria were higher in the < 2 μm or < 5 μm treatments with a second peak in the < 60 μm treatments. A general pattern of five potential trophic levels (< 2 μm, 2-5 μm, 5-10 μm, 10-60 μm, 60-200 μm) was revealed combining all the experiments, confirming the existence of multiple trophic levels within the microbial food web in the oligotrophic South China Sea.  相似文献   

6.
Biometric measurements of Mesozoic coccoliths (coccolith length and width) have been used in short-term biostratigraphic, taxonomic and palaeoecologic studies, but until now, not over longer time scales. Here, we present a long time-series study (∼ 30 million years) for the Upper Cretaceous, which aims to identify broad trends in coccolith size and to understand the factors governing coccolith size change over long time scales. We have generated biometric data for the dominant Upper Cretaceous coccolith groups, Broinsonia/Arkhangelskiella, Prediscosphaera, Retecapsa and Watznaueria, from 36 Cenomanian–Maastrichtian (100.5–66 Ma) samples from Goban Spur in the northeast Atlantic (DSDP Site 549). These data show that the coccolith sizes within Prediscosphaera, Retecapsa and Watznaueria were relatively stable through the Late Cretaceous, with mean size variation less than 0.7 μm. Within the Broinsonia/Arkhangelskiella group there was more pronounced variation, with a mean size increase from ∼ 6 μm in the Cenomanian to ∼ 10 μm in the Campanian. This significant change in mean size was largely driven by evolutionary turnover (species origination and extinctions), and, in particular, the appearance of larger species/subspecies (Broinsonia parca parca, Broinsonia parca constricta, Arkhangelskiella cymbiformis) in the early Campanian, replacing smaller species, such as Broinsonia signata and Broinsonia enormis. Shorter-term size fluctuations within Broinsonia/Arkhangelskiella, observed across the Late Cenomanian–Turonian and Late Campanian–Maastrichtian intervals, may, however, reflect changing palaeoenvironmental conditions, such as sea surface temperature and nutrient availability.  相似文献   

7.
8.
9.
Yeast cell wall fractions have been proposed to bind enteropathogenic bacteria. The aim of this study was to develop a quantitative assay by measuring the optical density as growth parameter of adhering bacteria. The exponential growth phase of adhering bacteria was determined by optical density reading and compared with the colony count (CFU/mL). A linear regression was compiled and the bacterial number bound to the yeast cell wall product could be determined. Further focus was the investigation of a yeast cell wall from strain Trichosporon mycotoxinivorans (MTV) for its ability to bind gram negative Salmonella, E. coli and Campylobacter strains and gram positive probiotic bacteria of the genera lactobacilli and bifidobacteria as well as gram positive Clostridium perfringens quantitatively. The gram negative probiotic strain E. coli Nissle 1917 was also investigated. Seven out of 10 S. Typhimurium and S. Enteritidis strains adhered to the cell wall product with an amount between 103 and 104 CFU/10 μg. Four out of 7 E. coli strains showed an average binding capability (102 CFU/10 µg) whereas 4 × 103E. coli F4 cells bound per 10 μg yeast cell wall. E. coli 0149 K91, E. coli 0147 K89, C. jejuni and C. perfringens as well the genera lactobacilli and bifidobacteria did not bind to the yeast cell wall. E. coli Nissle 1917 was bound with 2 × 102 CFU/10 μg. These results demonstrate that cell wall from MTV can be used to differentially bind E. coli spp. and Salmonella spp. up to 8 × 104 CFU/10 μg. Thus certain yeast cell walls may prevent enteric infections caused by selective bacteria. This methodical approach would be an accurate tool in the feed industry for quality control of yeast cell wall products.  相似文献   

10.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

11.
The indolealkylamine 5-hydroxytryptamine (5-HT, 0.1 nM-1 μM) caused dose-dependent increases in the number of contractions observed in guts isolated from the caterpillar Spodoptera frugiperda. Of the 5-HT analogues tested for agonist action, 2-methyl-5-HT (0.1-10 μM) was a full agonist with reduced potency while α-methyl-5-HT (0.1-100 μM), 5-carboxamidotryptamine (0.1-100 μM), 5-methoxytryptamine (5-MeOT) (10 nM-10 μM), and tryptamine (1-100 μM) were partial agonists. Incubation of isolated guts with proven mammalian 5-HT receptor antagonists showed that cyproheptadine (10 nM-1 μM), MDL 72222 (1-10 μM), tropisetron (1-10 μM) and 5-benzoyloxygramine (1-10 μM) were potent non-competitive antagonists of 5-HT-induced tissue contraction. In comparison, ketanserin (0.1-1 μM) was a competitive antagonist. The mammalian selective serotonin reuptake inhibitors, clomipramine (10 nM-10 μM) and fluoxetine (10 nM-10 μM) also caused non-competitive inhibition of 5-HT-induced contraction while fluvoxamine (10 nM-10 μM) was a weak competitive antagonist. Low doses of clomipramine (0.1 μM) caused potentiation of 5-HT-induced gut contraction thereby suggesting the presence of 5-HT reuptake systems in this tissue. The contractile effects of 5-HT were inhibited by verapamil, Li+ and H7 and potentiated by theophylline thereby indicating that L-type Ca2+ channels, phosphatidylinositol second messengers and cAMP, respectively, are involved in 5-HT-induced tissue contraction. The 5-HT receptors mediating contractility in the gut of S. frugiperda have properties in common with mammalian 5-HT2 and Drosophila 5-HTdro2A/2B receptors. In addition, these data suggest that the tissue also contains receptors that are similar to mammalian 5-ht6 and 5-HT7 as well as Drosophiladro1 receptors. However, the primary amino acid sequence of these lepidopteran 5-HT receptors will have to be elucidated before full comparisons can be made.  相似文献   

12.
The existence of a hydrodynamically relevant endothelial glycocalyx of ∼0.5 μm in thickness is well established in capillaries and venules in vivo. Since the glycocalyx is likely to have implications for broad areas of vascular physiology and pathophysiology, including endothelial-cell mechanotransduction, vascular permeability, and atherosclerosis, it is necessary to determine the extent to which the glycocalyx is present on arteriolar endothelium. We applied microviscometric analysis to data obtained using microparticle image velocimetry in cremaster-muscle arterioles of wild-type mice. Due to the pulsatile nature of the flow regimes in arterioles, data acquisition was triggered with the electrocardiogram at specific time points in the cardiac cycle. Results show the existence of a hydrodynamically relevant glycocalyx having a mean thickness of 0.38 μm in arterioles ∼20-70 μm in diameter (n = 20), which is ∼0.13 μm thinner (p = 0.03) than that found previously in venules having a similar diameter range and under similar hemodynamic conditions. Results from data obtained at multiple time points in the cardiac cycle show that the glycocalyx remains hydrodynamically relevant in arterioles with statistically insignificant changes in mean thickness throughout the cardiac cycle, despite the inherent unsteadiness of the flow regimes in these microvessels. These results provide direct in vivo confirmation of the existence of a hydrodynamically relevant surface glycocalyx that essentially eliminates fluid shear stress on arteriolar endothelium throughout the entire cardiac cycle.  相似文献   

13.
We investigated the effects of AT1 receptor stimulation by angiotensin II (Ang II) on human ether-a-go-go-related gene (hERG) potassium channel protein in a heterogeneous expression system with the human embryonic kidney (HEK) 293 cells which stably expressed hERG channel protein and were transiently transfected with the human AT1 receptors (HEK293/hERG). Western-blot analysis showed that Ang II significantly decreased the expression of mature hERG channel protein (155-kDa band) in a time- and dose-dependent manner without affecting the level of immature hERG channel protein (135-kDa band). The relative intensity of 155-kDa band was 64.7 ± 6.8% of control (P < 0.01) after treatment of Ang II at 100 nM for 24 h. To investigate the effect of Ang II on the degradation of mature hERG channel protein, we blocked forward trafficking from ER to Golgi with a Golgi transit inhibitor brefeldin A (10 μM). Ang II significantly enhanced the time-dependent reduction of mature hERG channel protein. In addition, the proteasomal inhibitor lactacystin (5 μM) inhibited Ang II-mediated the reduction of mature hERG channel protein, but the lysosomal inhibitor bafilomycin A1 (1 μM) had no effect on the protein. The protein kinase C (PKC) inhibitor bisindolylmaleimide 1 (1 μM) antagonized the reduction of mature hERG channel protein induced by Ang II. The results indicate that sustained stimulation of AT1 receptors by Ang II reduces the mature hERG channel protein via accelerating channel proteasomal degradation involving the PKC pathway.  相似文献   

14.
Reduction of Complex I (NADH:ubiquinone oxidoreductase I) from Escherichia coli by NADH was investigated optically by means of an ultrafast stopped-flow approach. A locally designed microfluidic stopped-flow apparatus with a low volume (0.2 μl) but a long optical path (10 mm) cuvette allowed measurements in the time range from 270 μs to seconds. The data acquisition system collected spectra in the visible range every 50 μs. Analysis of the obtained time-resolved spectral changes upon the reaction of Complex I with NADH revealed three kinetic components with characteristic times of < 270 μs, 0.45–0.9 ms and 3–6 ms, reflecting reduction of different FeS clusters and FMN. The rate of the major (τ = 0.45–0.9 ms) component was slower than predicted by electron transfer theory for the reduction of all FeS clusters in the intraprotein redox chain. This delay of the reaction was explained by retention of NAD+ in the catalytic site. The fast optical changes in the time range of 0.27–1.5 ms were not altered significantly in the presence of 10-fold excess of NAD+ over NADH. The data obtained on the NuoF E95Q variant of Complex I shows that the single amino acid replacement in the catalytic site caused a strong decrease of NADH binding and/or the hydride transfer from bound NADH to FMN.  相似文献   

15.
The effects of edaphic moisture in anatomical characters were evaluated in two different populations of Carex hirta L. with three watering treatment for 6 months to evaluate stability, and determined taxonomic value. Water availability increased (p < 0.001) leaf thickness from 239 to 289 μm, metaxylem vessel diameter from 17 to 23 μm, air cavity size from 10 to 24% and adaxial epidermal cell height from 18 to 34 μm, and abaxial from 11 to 16 μm, adaxial epidermal cell length from 54 to 105 μm, and abaxial from 35 to 86 μm, and adaxial epidermal cell width from 20 to 33 μm, and abaxial from 15 to 23 μm. Stomatal index and the number of cells in the girder of sclerenchyma did not vary with water availability, hence these traits have taxonomic value. Other characters (the length and amplitude of wall undulations in the epidermal cells, the number of bulliform cells) have a doubtful relation with water availability, because they are variable even in constant homogeneous conditions.  相似文献   

16.
17.
L-selectin-mediated leukocyte rolling has been proposed to require a high rate of bond formation compared to that of P-selectin to compensate for its much higher off-rate. To test this hypothesis, a microbead system was utilized to measure relative L-selectin and P-selectin bond formation rates on their common ligand P-selectin glycoprotein ligand-1 (PSGL-1) under shear flow. Using video microscopy, we tracked selectin-coated microbeads to detect the formation frequency of adhesive tether bonds. From velocity distributions of noninteracting and interacting microbeads, we observed that tether bond formation rates for P-selectin on PSGL-1 decreased with increasing wall shear stress, from 0.14 ± 0.04 bonds/μm at 0.2 dyn/cm2 to 0.014 ± 0.003 bonds/μm at 1.0 dyn/cm2. In contrast, L-selectin tether bond formation increased from 0.017 ± 0.005 bonds/μm at 0.2 dyn/cm2 to 0.031 ± 0.005 bonds/μm at 1.0 dyn/cm2. L-selectin tether bond formation rates appeared to be enhanced by convective transport, whereas P-selectin rates were inhibited. The transition force for the L-selectin catch-slip transition of 44 pN/bond agreed well with theoretical models (Pereverzev et al. 2005. Biophys. J. 89:1446-1454). Despite catch bond behavior, hydrodymanic shear thresholding was not detected with L-selectin beads rolling on PSGL-1. We speculate that shear flow generated compressive forces may enhance L-selectin bond formation relative to that of P-selectin and that L-selectin bonds with PSGL-1 may be tuned for the compressive forces characteristic of leukocyte-leukocyte collisions during secondary capture on the blood vessel wall. This is the first report, to our knowledge, comparing L-selectin and P-selectin bond formation frequencies in shear flow.  相似文献   

18.
The trophozoites of a novel gregarine apicomplexan, Trichotokara nothriae n. gen. et sp., were isolated and characterized from the intestines of the onuphid tubeworm Nothria conchylega (Polychaeta), collected at 20 m depth from the North-eastern Pacific Coast. The trophozoites were 50-155 μm long with a mid-cell indentation that formed two prominent bulges (anterior bulge, 14-48 μm wide; posterior bulge, 15-55 μm wide). Scanning electron microscopy (SEM) demonstrated that approximately 400 densely packed, longitudinal epicytic folds (5 folds/μm) inscribe the surface of the trophozoites, and a prominently elongated mucron (14-60 μm long and 6-12 μm wide) was covered with hair-like projections (mean length, 1.97 μm; mean width, 0.2 μm at the base). Although a septum occurred at the junction between the cell proper and the mucron in most trophozoites, light microscopy (LM) demonstrated that the cell proper extended into the core of the mucron as a thin prolongation. A spherical nucleus (8-20 μm) was situated in the middle of the trophozoites, and gamonts underwent caudal syzygy. The small subunit (SSU) rDNA sequence and molecular phylogenetic position of T. nothriae was also characterized. The sequence from this species was the most divergent of all SSU rDNA sequences currently known from gregarines and formed a weakly supported clade with Lecudina polymorpha, which also possesses densely packed epicyctic folds (3-5 folds/μm) and a prominently elongated mucron.  相似文献   

19.
The serow (Capricornis sumatraensis) is a critically endangered species. The objectives of this study were to evaluate ejaculate quality in captive males, and to investigate and characterize sperm morphology. Semen was collected using electroejaculation. Mean (±S.D.) seminal characteristics were: semen volume 2.3 ± 0.8 mL, pH 7.8 ± 0.4, and osmolality 329.9 ± 32.9 mOsmol/kg; sperm concentration 515.8 ± 263.1 × 106 cells/mL; wave motion score (1-5) 3.9 ± 0.4; motile sperm 60.5 ± 22%; viable sperm 68.3 ± 9.4%; morphologically normal sperm 70.8 ± 19.3%; and an opacity that was yellowish to milky-white. Sperm head length, width, degree of elongation, area, and perimeter were 6.0 ± 0.6 μm, 4.3 ± 0.3 μm, 71.7 ± 8.6%, 19.8 ± 2.5 μm2, and 17.9 ± 2.1 μm. Based on these measurements, we categorized sperm head morphometry as small, medium, or large. In addition, sperm morphology was examined by light and scanning electron microscopy; overall, morphologically normal and abnormal sperm were similar to those reported for other bovidae. In summary, this study provided baseline data regarding semen characteristics of C. sumatraensis, which should be of value in the preservation of this endangered species.  相似文献   

20.
Layer 10 neurons of the chick tectum were morphologically investigated. The layer 10 neurons displayed heterogeneous immunoreactivities to calcium-binding proteins (CaBPs). Calbindin (CB)-immunoreactive (ir) neurons had pyramidal or round somata, primarily found in layers 5, 9, and 13. Parvalbumin (PV)-ir neurons were of various shapes with small to large somata (109.7 ± 48.6 μm2) that were located mainly in layers 4 and 10. Calretinin (CR)-ir neurons had small to middle-sized somata (79.3 ± 9.7 μm2) located primarily in layers 10 and 13, and most of them were similar to typical radial cells in size and shape. Two distinct types of neurons that projected to the nucleus geniculatus lateralis, pars ventralis (GLv) and ventral thalamus were demonstrated in layer 10. Type 1 cells had small to middle-sized somata (74.3 ± 33 μm2), and each cell had a single apical dendrite that ramified into bush-like branches in layer 7. These cells corresponded to CR-ir neurons and radial cells in size and shape. Type 2 cells had larger somata (124.7 ± 52.6 μm2), and their shapes were pyramidal, polygonal, or oval. They had multiple obliquely ascending dendrites that ramified into bush-like branches in layer 7. These cells often appeared similar to PV-ir neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号