首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The enhancer of split locus and neurogenesis in Drosophila melanogaster   总被引:11,自引:0,他引:11  
Enhancer of split (E(spl)) is one of a group of so-called neurogenic genes of Drosophila. We describe two different types of E(spl) alleles, dominant and recessive, which exert opposite effects on both central and peripheral nervous system development. The only extant dominant allele determines a reduction in the number of central neurons and peripheral sensilla; this phenotype is not reduced by a normal complement of wild-type alleles. Since animals carrying a triploidy for the wild-type locus develop similar defects, the dominant allele is probably the result of a gain-of-function mutation. Several recessive alleles, obtained as revertants of the dominant allele, are loss-of-function mutations and determine considerable neural hyperplasia. The present evidence suggests that neural defects of E(spl) mutants are due to defective segregation of neural and epidermal lineages, leading to neural commitment of less or of more cells than in the wild type, depending upon whether the animals carry the dominant or any of the recessive alleles, respectively. Therefore, E(spl) formally behaves as a gene switching between neural and epidermal pathways.  相似文献   

5.
Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex were known to encode helix-loop-helix (HLH) proteins and to be transcribed in nearly identical patterns. Here, we show that four other genes in the vicinity also encode HLH proteins and, during neuroblast segregation, three of them are expressed in the same pattern. We show by germ-line transformation that these three genes are also necessary to allow epidermal development of the neuroectodermal cells.  相似文献   

6.
7.
A dramatic example of a phenotypic interaction that involves neurogenic loci during Drosophila imaginal development is the synergistic impact of split (spl), a recessive allele of the Notch locus, and E(spl)D, a dominant gain-of-function allele of the Enhancer of split locus, on morphogenesis of the compound eye. Screens for mutations that relieve the enhancing effect of E(spl)D on spl have yielded three classes of mutations: intragenic revertants of the E(spl)D allele, extragenic suppressors that are allelic to the neurogenic gene Delta (Dl) and unlinked extragenic modifiers. Analysis of the suppression of the spl-E(spl)D interaction by various Dl alleles indicates that this modification is sensitive to the dosage of the Dl locus. This tripartite interaction illustrates the combinatorial action of N, Dl and E(spl) during imaginal development.  相似文献   

8.
During early development, the neurogenic genes of Drosophila melanogaster are involved in the control of cell fates in the neurectoderm; almondex (amx) belongs to this category of genes. We have identified the amx locus and rescued the amx embryonic neurogenic phenotype with a 1.5 kb DNA fragment. Using a small deficiency, we generated a new amx mutant background called amx(m), which is a null allele. Besides the characteristic neurogenic maternal effect caused by loss of amx, amx(m) flies display a new imaginal phenotype resembling loss of function of Notch. We describe amx-induced misregulation of the Notch pathway target E(spl) m7 in embryos and genetic interactions between amx and Notch pathway mutants in adult flies. These data show that wildtype amx acts as a novel positive regulator of the Notch pathway and is required at different levels during development.  相似文献   

9.
10.
11.
12.
13.
Summary The gene master mind (mam) is located in bands 50C23-D1 of the second chromosome of Drosophila melanogaster. mam is one of the neurogenic genes, whose function is necessary for a normal segregation of neural and epidermal lineages during embryonic development. Loss of function of any of the neurogenic genes results in a mis-routeing into neurogenesis of cells that normally would have given rise to epidermis. We describe here the molecular cloning of 198 kb of genomic DNA containing the mam gene. Ten different mam mutations (point mutants and chromosomal aberrations) have been mapped within 45 kb of the genomic walk. One of the mutations, an insertion of a P-element, was originally recovered from a dysgenic cross. Four different wild-type revertants of this mutation were characterized at the molecular level and, although modifications of the insertions were found, in no case was the transposon completely excised. An unusually high number of the repetitive opa sequence, and of an additional previously unknown element, which we have called N repeat, are scattered throughout the 45 kb where the mam mutations map. The functional significance of these repeats is unknown.  相似文献   

14.
Molecular correlation of the genetic aspects of the function of the neurogenic gene Enhancer of split [E(spl)] has previously been hampered by the densely transcribed nature of the chromosomal region within which it resides. We present data indicating that two distinct molecular species contribute to E(spl) function. Analysis of new E(spl) alleles has allowed us to define two complementing functions within the locus. Subsequent phenotypic analysis of different E(spl) deficiencies combined with P element-transformed constructs has demonstrated that these two functions correspond to: (1) a family of helix-loop-helix (HLH) protein-encoding genes and (2) the single copy gene E(spl) m9/10, whose product shares homology with G-protein beta subunits. The zygotically active E(spl) HLH genes can, at least partially, substitute for one another's functions and their total copy number determines the activity of the locus. E(spl) m9/10 acts synergistically with the E(spl) HLH genes and other neurogenic genes in the process of neurogenesis. The maternal component of E(spl) m9/10 has the most pronounced effect in neurogenesis, while its zygotic component is predominantly required during postembryonic development. The lethality of trans-heterozygotes of null E(spl) deficiency alleles with a strong Delta point mutation is a result of the concomitant reduction in activity of both E(spl) HLH and m9/10 functions. Immunocytochemical localization of the E(spl) m9/10 protein has revealed that it is a ubiquitously distributed nuclear component in embryonic, larval and imaginal tissues.  相似文献   

15.
R Debuchy  S Purton    J D Rochaix 《The EMBO journal》1989,8(10):2803-2809
The argininosuccinate lyase (ASL) gene of Chlamydomonas reinhardtii has been cloned using four oligonucleotide probes corresponding to highly conserved regions of the ASL polypeptide sequence. The identity of the gene was confirmed by partial sequencing. It is unique, contains several introns and spans a region less than 7.8 kb that includes highly repetitive sequences. Using a particle gun, a reliable nuclear transformation system has been established by complementing three mutants deficient in ASL activity with the wild-type ASL gene. Analysis of the transformants reveals variable patterns of integration of the transforming DNA into the nuclear genome. Previous work has mapped the mutations in the mutants arg2 and arg7 to either end of the ARG7 locus 1.0 to 1.6 recombination map units apart. Our transformation results show that these two mutations are located within a region of 7.8 kb. This allows for the first correlation of the recombination map and the molecular map at the ARG7 locus and indicates a high recombination frequency in this region of the nuclear genome.  相似文献   

16.
Molecular analysis of the yellow locus of Drosophila   总被引:18,自引:4,他引:14       下载免费PDF全文
  相似文献   

17.
18.
19.
B Burr  F A Burr 《Cell》1982,29(3):977-986
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号