首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasm of young oocytes of the ascidians contains high concentrations of proteins which are stainable with alkaline fast green at pH 8.1 and above. These proteins cannot be stained even with acid dyes at low pH unless RNA is removed. Deamination and formalin blockage of amino groups is incapable of destroying the net positive charge on these protein molecules in the presence of RNA, but these treatments destroy the charge if RNA is removed. It is therefore concluded that basic proteins and RNA exist as a nucleoprotein complex in the ribosomes of these young oocytes. The detectable RNA of the mature oocytes and unfertilized eggs shows no evidence of being associated with basic proteins.  相似文献   

2.
Kinetics of accumulation of total and poly(A)-containing RNA have been measured during growth of the mouse oocyte. Total RNA from oocytes isolated at discrete stages of growth was determined by two independent microassays. The full-grown oocyte contained about 0.60 ng of RNA. Kinetics of accumulation of total RNA with respect to oocyte volume were biphasic. Small, growing oocytes (about 30 pl) contained about 0.20 ng of RNA/oocyte. The amount of RNA increased in a quasi-linear fashion until oocyte volume was about 160 pl, at which point there was about 0.57 ng of RNA/oocyte. Thus oocytes about 65% of their final volume had accumulated about 95% of the total amount of RNA present in the fully-grown oocyte. The relative amount of poly (A)-containing RNA in oocytes of various size was determined by in situ hybridization of [3H] poly (U) to ovarian sections from juvenile mice of known age, followed by autoradiography. The kinetics of accumulation of poly (A)-containing RNA were similar to those of total RNA; oocytes about 70% of their final volume had accumulated about 95% of the amount of poly (A)-containing RNA present in the fully-grown oocyte. The poly(A)-containing RNA resided predominantly in the cytoplasm and no obvious cytoplasmic localization was observed. Kinetics of accumulation of total RNA, which is mainly ribosomal, and poly (A)-containing RNA were consistent with levels of RNA polymerases I and II measured by others during oocyte growth (Moore and Lintern-Moore, '78). The number of ribosomes that could be made from the amount of rRNA present at various stages of growth was compared to the actual number of ribosomes calculated from a published morphometric study (Garcia et al., '79). Kinetic differences in accumulation between the theoretical and actual number of ribosomes suggested oocyte ribosomes are recruited into cytoplasmic lattice structures. These structures accumulate during oocyte growth and have been postulated to be a ribosomal storage form. In addition, the results from this study are compared to results derived from lower species.  相似文献   

3.
The bovine mitochondrial system is being developed as a model system for studies on mammalian mitochondrial ribosomes. Information is emerging on the structural organization and RNA binding properties of proteins in these mitochondrial ribosomes. Unexpectedly, these ribosomes appear to interact directly with GTP, via a high affinity binding site on the small subunit. Despite major differences in their RNA content and physical properties, mammalian mitochondrial and cytoplasmic ribosomes contain about the same number of proteins. The proteins in each kind of ribosome have a similar size distribution, and both sets are entirely coded by nuclear genes, raising the possibility that these different ribosomes may contain the same set of proteins. Comparison of bovine mitochondrial and cytoplasmic r-proteins by co-electrophoresis in two-dimensional gels reveals that most of the cytoplasmic ribosomal proteins are more basic than the mitochondrial ribosomal proteins, and that none are co-migratory with mitochondrial ribosomal proteins, suggesting that the proteins in the two ribosomes are different. To exclude the possibility that the electrophoretic differences result only from post-translational modification of otherwise identical proteins, antibodies against several proteins from the large subunit of bovine mitochondrial ribosomes were tested against cytoplasmic ribosomes by solid phase radioimmunoassay and against cytoplasmic ribosomal proteins on Western blots. The lack of cross-reaction of these antibodies with cytoplasmic r-proteins suggests that mitochondrial ribosomal proteins have different primary structures and thus are most likely encoded by a separate set of nuclear genes.  相似文献   

4.
Summary The unicellular green alga Chlorella incorporates labeled uridine mainly into the precursors of chloroplast ribosomes. After treatment with rifampicin for 60 min, the uridine incorporation into the particles is completely inhibited. Chloramphenicol treatment results in the same complete inhibition. In constrast, cycloheximide (actidione) slightly stimulates the incorporation of uridine into the chloroplast ribosome precursors.Short-time incorporation of inorganic phosphate into the ribosome fractions is nearly unaffected by rifampicin and chloramphenicol, but it is strongly inhibited by cycloheximide.Isolation and chromatographic separation of nucleic acids after treatment of cells with rifampicin shows that uridine incorporation into RNA is completely inhibited. Chloramphenicol causes only partial inhibition of uridine labeling in the high molecular weight RNA. Here again, cycloheximide stimulates the uridine incorporation.The results indicate that uridine is preferentially incorporated by Chlorella cells into the chloroplast ribosome precursors. Inorganic phosphate is introduced both into cytoplasmic and into chloroplasmic RNA, but because of the quantitative distribution, the cytoplasmic ribosomes are more extensively labeled. Since only inhibitors of bacterial and chloroplasmic RNA-and protein synthesis affect the formation of uridine-labeled ribosomes, this synthesis must take place in the chloroplast itself.
Abkürzungen DNA Desoxyribonucleinsäure - RNA Ribonucleinsäure - MAK-Säule Säule aus methyliertem Albumin mit Kieselgur - Bis-MSB bis-(O-Methylstyryl)-Benzol - PPO 2,5 Diphenyloxazol - Tris Trimethylaminomethan  相似文献   

5.
Summary The cytochemistry of oocyte growth was investigated in four species of millipedes; Narceus americanus, Oxidus gracilis, Cheiropus plancus, and a Pleuroloma species, probably P. cala. The oocyte of all four species produced a yolk nucleus which arose in contact with the nuclear membrane, subsequently detached, migrated into the central ooplasm and disrupted coincident with the appearance of protein yolk granules in the oocyte cytoplasm. Since the follicular epithelium did not display any morphological or cytochemical manifestations of secretory activity, it is suggested that direct incorporation of exogeneous proteins into yolk may play a lesser role in vitellogenesis in these forms than in insects and many other animal groups. Ooplasmic RNA levels achieved a maximum before vitellogenesis was initiated and then decreased. Similarly the nucleoli increased in size and RNA content up to the point at which cytoplasmic RNA levels began to decline. Basic proteins associated with RNA were present in the oocyte cytoplasm and the nucleoli. These achieved a peak concentration in the same size oocytes as RNA, but the intensity of staining decreased more rapidly than that of RNA during subsequent growth. The concentration of nucleoplasmic protein in oocytes of all four millipede species increased in the germinal vesicles during the course of oocyte growth. Coincident with the initiation of vitellogenesis, a class of cytoplasmic inclusions was developed which have been called concentric ring bodies. These inclusions consist of concentric layers of organic matrix material with crystallized calcium salts sandwiched between. These probably represent calcium reserves which are utilized in the formation of the exoskeleton by the embryo.Presented in partial fulfillment of the requirements for the Master of Science degree to the Graduate School of Arts and Sciences of the University of Florida.This work was supported by the following U.S. Public Health Service grants: Pathology Training Grant 5-T1-GM-1142-03, and to R. R. C. HD-1499-04 and Career Development Award K-3-HD-6176-04.  相似文献   

6.
Gene products present in mouse oocytes direct development until the two-cell stage and may be important in later development. Here, we demonstrate that expression of a specific maternal protein can be disrupted in mouse oocytes using transgenic antisense RNA technology. An oocyte-specific promoter (mZP3) was utilized to express antisense RNA directed against maternal mRNA encoding tissue-type plasminogen activator (tPA). Antisense expression results in reduced levels of tPA mRNA and enzyme activity in mouse oocytes. We also provide evidence for a novel mechanism of antisense-mediated translational inhibition, whereby the cytoplasmic polyadenylation of maternal tPA mRNA is altered. This strategy should prove applicable to functional studies of other murine maternal mRNAs in an in vivo environment.  相似文献   

7.
Summary High molecular weight mitochondrial RNA from Saccharomyces cerevisiae can be isolated rapidly and in relatively high yield from mitochondria prepared from cells prefixed with glutaraldehyde and disrupted mechanically. The RNA has lower electrophoretic mobilities than corresponding species from cytoplasmic ribosomes, and can also be distinguished from cytoplasmic RNA on the basis of the sensitivity of the mobility to temperature. RNA from cytoplasmic ribosomes and mitochondria of Candida parapsilosis shows a similar differential response to temperature.Mitochondrial ribosomes in Saccharomyces cerevisiae do not appear to be distinguishable from the cytoplasmic particles on the basis of sedimentation velocity. They can be identified, however, by pulse-labelling cells in the presence of cycloheximide. Cytoplasmic ribosomes under these conditions do not label. The labelling of mitochondrial ribosomes is sensitive to chloramphenicol, and is dispersed over the polysomal or ribosomal aggregate region of density gradients.  相似文献   

8.
Summary The components of soluble protein and ribosomal RNA in green and albino pollen plantlets of rice were studied by means of polyacrylamide gel electrophoresis. The results were as follows: (1) Soluble protein: the soluble proteins in green pollen plantlets may be fractionated into 15 bands of varying intensities in which the highest content and the most prominent one is band 3 (fraction I protein). Band 3, however, is nearly absent in albino pollen plantlets. (2) Ribosomal RNA (rRNA): rRNA of high molecular weight in green pollen plantlets may be fractionated into 4 bands, i.e. 25S RNA and 18S RNA in cytoplasmic ribosomes, and 23S RNA and 16S RNA in plastid ribosomes. Little or no 23S RNA and 16S RNA, however, is found in albino pollen plantlets. Together with the evidence obtained by other workers, it is suggested that albino forms of pollen plantlets is caused by the impairment of DNA.  相似文献   

9.
10.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

11.
The involvement of mouse mammary tumor virus (MTV) in the development of mammary tumors of nonviral etiology in BALB/c mice was studied by measuring the levels of MTV RNA, MTV DNA, and MTV proteins in spontaneously arising and hormonally, chemically, and/or physically induced mammary tumors of BALB/c females. The following results were obtained. (i) Spontaneous mammary tumors contained very low levels of MTV RNA; 4 X 10(-6)% of the the cytoplasmic RNA was MTV RNA. No MTV proteins could be demonstrated by using sensitive radioimmunoassays for MTV proteins p27 and gp52. (ii) Mammary tumors induced by treatments with urethane or X-irradiation alone contained higher levels of MTV RNA; these tumors contained 3- and 19-fold more MTV RNA, respectively, compared with spontaneous mammary tumors. (iii) Mammary tumors induced by combined treatment with urethane and X-irradiation expressed high levels of MTV RNA in the mammary tumors; a 1,724-fold increase in MTV RNA content compared with spontaneous mammary tumors was observed. However, very low levels of MTV proteins gp52 and p27 were detected, suggesting some kind of impairment at the translation of the MTV RNA. MTV RNA was also induced by this treatment in mammary glands and spleens, but not in the livers of tumor-bearing animals. (iv) Balb/c females continuously exposed to prolactin contained high levels of MTV RNA and MTV proteins in stimulated mammary glands and in the hormonally induced mammary tumors. These findings suggest that MTV is not responsible for the maintenance and probably also not for the development of all murine mammary cancers.  相似文献   

12.
The biosynthesis of the light-harvesting complex (LHC) polypeptides of the green flagellate Mantoniella squamata (Manton et Parke) Desikachary (Micromonadophyceae, Chlorophyta) was examined by in vivo polypeptide labeling and immunoprecipitation of in vitro translation products. Using protein synthesis inhibitors, the LHC polypeptides were shown to be synthesized on 80S cytoplasmic ribosomes and not in the chloroplasts of cells. Poly (A)+ RNA was isolated and proteins were synthesized by a rabbit reticulocyte lysate system, with antisera raised against M. squamata LHC used for immunoprecipitation from the translation products. One polypeptide 3-5 kDa larger than mature LHC polypeptides was immunoprecipitated. These studies indicate that although the LHC of M. squamata is quite different from the LHC of most green plants, the LHC polypeptides are synthesized as precursors in the cytoplasm of the cell and suggest that the genes encoding these polypeptides are located in the nucleus.  相似文献   

13.
Summary A variant of the Feulgen reaction which has been proposed as a method for demonstrating cytoplasmic DNA in oocytes has been tested on ovarian material from a variety of species. While Schiff positive staining was developed, this was not removable by pretreatment with DNase and could be reproduced by using oxidants used in the pseudoplasmal reaction. This method was not considered useful for demonstrating cytoplasmic DNA.When chloroform extracted solutions of methyl green were used to stain ovaries, cytoplasmic staining identical in pattern to that obtained with other basic dyes was observed. The cytoplasmic staining was prevented by pretreatment of sections with RNase, but was not affected by DNase pretreatment. In somatic cells with high concentrations of cytoplasmic RNA, only nuclear staining was observed. This nuclear staining was labile to DNase but not to RNase.This work was supported by U.S. Public Health Service grants GM-10003-03 and K-3-6176-03.Contribution number 376 of the Bermuda Biological Station.  相似文献   

14.
Previtellogenic oocytes of Xenopus laevis synthesize large amounts of 5 S RNA and transfer RNA, but very little, if any, 28 S and 18 S RNA. About half of the RNA of these oocytes is stored in nucleoprotein particles sedimenting at 42 S. These particles contain 5 S RNA, transfer RNA, and several proteins, the function of which remains so far unknown.The proteins of the 42 S particles were analyzed by two-dimensional electrophoresis on polyacrylamide gel. The resulting fingerprints displayed one major and two minor basic spots. None of these coincided with any of the 37 spots produced by the 60 S subunit of the ribosomes and with the 30 spots produced by the 40 S subunit. We conclude that no ribosomal component other than 5 S RNA is present in the 42 S particles.The fingerprints of 40 S and 60 S ribosomal proteins from X. laevis coincided almost completely with the corresponding fingerprints from the rat and the rabbit.  相似文献   

15.
When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were 3H-labeled in vitro and injected back into X. laevis oocytes, most 3H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, 3H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of 3H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide, a cysteine protease inhibitor, resulting in the accumulation of 3H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus.  相似文献   

16.
To obtain information on the amounts and major classes of RNA stored in the mouse egg and accumulated during cleavage, we determined the contents of total RNA, total poly(A), and ribosomes from the 1-cell stage to blastocyst. Using purified RNA for assay, we obtained an RNA content of 0.35 ng in the unfertilized egg, 0.24 ng in 2-cell, 0.69 ng in 8- to 16-cell, and 1.47 ng in early bastocyst (32 cells). As derived from EM morphometry, the number of ribosomes accounts for 60–70% of the total RNA content at all these stages; the marked increase in ribosomal number during cleavage is attributable entirely to new synthesis. Hybridization with [3H]poly(U) in solution yielded a poly(A) content of 0.7 pg for the unfertilized egg and 0.83 pg for the 1-cell embryo. The poly(A) content dropped sharply, to 0.26 pg per embryo, by the late 2-cell stage and increased to 0.44 pg in 8- to 16-cell embryos and 1.42 pg in early blastocysts. Hybridization in situ gave a similar pattern and also revealed a heavy labeling of embryo nuclei from the 2-cell onward but very little, if any, labeling of the pronuclei of 1-cell embryos, suggesting an absence, or low level, of poly(A)+ RNA synthesis at the 1-cell but an active synthesis at the 2-cell and later stages. These findings and other available evidence(e.g., R. Bachvarova and V. De Leon, 1980, Develop. Biol.74, 1–8) suggest that the mouse embryo inherits a large supply of maternal mRNA but that the bulk of this RNA is eliminated in the 2-cell embryo. In situ hybridization was used to study the relative concentration of poly(A) in ovarian oocytes. In growing oocytes, the cytoplasmic concentration of poly(A) remains about the same, suggesting that the accumulation of poly(A)+ RNA is proportional to oocyte growth. The poly(A) content declines about twofold between the time of completion of oocyte growth and fertilization. The germinal vesicle continues to be labeled up to the time of ovulation, raising the possibility that poly(A)+ RNA synthesis (and presumably turnover) occurs in fully grown oocytes.  相似文献   

17.
The cytoplasmic and chloroplast ribosomes from the marine diatom Cylindrotheca fusiformis were isolated and characterized. The cytoplasmic ribosomes sedimented in sucrose at 84S and dissociated into subunits of 64S and 42S in the absence of Mg2+. It contained ribosomal RNAs with molecular weights of 1.31×106 and 0.70×106. The chloroplast ribosomes sedimented at 70S only in the presence of high Mg2+ concentrations (25–100 mM). No stable subunits were routinely observed and at very high levels of Mg2+ (>100 mM) the 70S species was converted to a form sedimenting at 55S. At 4°C ribosomal RNAs with molecular weights of 1.1×106 and 0.40×106 were detected on polyacrylamide gel electrophoresis. When the RNAs were resolved at room temperature the large molecular weight component disappeared while RNA with molecular weights of 0.65×106 and 0.53×106 were observed. Apparently the large chloroplast RNAs dissociated into two pieces of unequal molecular weight. These properties of the diatom's chloroplast ribosomes are very similar to those of the counter parts in unicellular green algae, which suggests that both types of algae have a common phylogenetic ancestor.  相似文献   

18.
O'Brien TW 《Gene》2002,286(1):73-79
Mitochondrial ribosomes comprise the most diverse group of ribosomes known. The mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. The bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Mammalian mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. Interest is growing in the structure, organization, chromosomal location and expression of genes for human MRPs. Proteins which are essential for mitoribosome function are candidates for involvement in human genetic disease.  相似文献   

19.
20.
Summary Two distinct types of ribonucleoprotein containing structures are found in oocytes of the house cricket, Acheta domesticus, a large secondary or accessory nucleolus and many small primary nucleoli. The secondary nucleolus increases in size during oocyte development and is similar in appearance to the nucleolus of somatic cells. The primary nucleoli are intimately associated with a large, extrachromosomal DNA containing body. The DNA body is no longer visible in nuclei of late diplotene stage cells when the primary nucleoli are dispersed within the nucleoplasm. Both types of nucleoli contain cytochemically detectable RNA and acid protein, little or no DNA and basic protein, and particulate structures similar to but smaller than cytoplasmic ribosomes.The authors acknowledge the technical assistance of Miss Celeste Malinoski and Mrs. Marcia Andrews. This work was supported by a U.S.P.H.S. grant, number GM-16440-01 and grants number L-16 and J-1 from the Health Research Services Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号