首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Imposition of anoxia on maize (Zea mays cv. B73) seedlings for 48 h or longer led to the death of the root tip. The necrosis extended into the root axis during postanoxic treatment, leading to the mortality of 30-50% of the seedlings. Using zymography, protease profiles in the root tissues of anoxic seedlings were studied. O2 deprivation for 24 h or longer repressed pre-existing protease activities and induced a novel soluble enzyme in the roots. The anoxia-induced protease (AIP) activity was predominant in the root apex at 24 h of anoxia and, subsequently, became the most abundant soluble activity in the root axis as well. The induction of AIP and its in vitro renaturation were Ca(2+)-dependent. Inhibitor sensitivity studies indicated that AIP is a cysteine protease. In SDS-acrylamide gels, the enzyme activity migrated as a 23.5 kDa polypeptide. The anoxic induction of the activity was repressed by cycloheximide treatment, suggesting that new protein synthesis was required for the AIP appearance. Excision of the root tip (de-tipping) before anoxia led to a superior recovery of seedlings from stress injury. De-tipped seedlings showed lesser root damage and an increased production of lateral roots compared to intact seedlings. Furthermore, the superior anoxia tolerance of de-tipped seedlings was associated with a decreased AIP activity. Thus, the appearance of AIP activity in the root tip at 24 h of anoxia was spatially and temporally associated with the root tissue death. These studies further indicate that the root tip elimination early during anoxia may provide an adaptive advantage.  相似文献   

2.
10μmol/L甲基紫精(MV)预处理水稻幼苗可明显提高其抗冷力,但这种功效可被钙的螯合剂EGTA(10 mmol/L)和钙调素(CaM)的抑制剂氯丙嗪(CPZ,0.5mmol/L)所抑制。MV预处理提高了幼苗质膜、液泡膜Ca^2 -ATP酶活性,同时也有提高质膜Fe(CN)6^3-还原速率和这些活性的冷适应性,但这些效果均可被EGTA和CPZ所抑制。离体条件下,膜微囊的Ca^2 -ATP酶活性对H2O2、O2^-、-0H敏感。结果显示,MV预处理提高幼苗的抗冷力可能是通过钙信使介导起作用的,钙信使或CaM可能刺激了质膜、液泡膜Ca^2 -ATP酶活性;而该预处理有增加质膜、液泡膜Ca^2 -ATP酶的冷稳定性则可能与该处理有提高细胞抗氧化能力、稳定冷胁迫下细胞膜系统结构有关。  相似文献   

3.
Developmental regulation of anoxic stress tolerance in maize   总被引:3,自引:0,他引:3  
Anoxia associated with flooding stress is detrimental to plant growth and productivity. When maize seedlings 2 to 7 d old were exposed to anoxic stress, 3-d-old seedlings were found to have much lower tolerance than 2-d-old seedlings. Ninety per cent of 2-d-old seedlings survived 72 h of anoxic stress compared with 0% of the 3-d-old seedlings. Since 2-d-old isolated root tips survived anoxic stress better than 3-d-old tips, the anoxic tolerance of 2-d-old seedlings was independent of the translocation of nutrient reserves from the endosperm to the root. The addition of glucose to the medium improved the anoxia tolerance of 2-d-old seedlings by 25% but had no effect on 3-d-old seedlings. Acclimation by pre-cxposure to 4% oxygen and pre-treatment with 100mmol m?1 abscisic acid (ABA) improved the anoxia tolerance of 3-d-old seedlings by 2- and 4-fold, respectively. However, acclimation and ABA treatment had no effect on 2-d-old seedlings. The results indicate that anoxia tolerance in maize is develop-mentally regulated. The mechanism of anoxia tolerance innate to 2-d-old seedlings was inducible in 3-d-old seedlings by acclimation or treatment with ABA.  相似文献   

4.
H Li  Y Lin  R M Heath  M X Zhu    Z Yang 《The Plant cell》1999,11(9):1731-1742
We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1At in the plasma membrane at the tip and caused depolarization of pollen tube growth, which was less severe than that induced by the constitutively active rop1at. These results indicate that both Rop1At signaling and polar localization are critical for controlling the site of tip growth. Dominant negative rop1at mutants or antisense rop1at RNA inhibited tube growth at 0.5 mM extracellular Ca(2+), but growth inhibition was reversed by higher extracellular Ca(2+). Injection of anti-Rop antibodies disrupted the tip-focused intracellular Ca(2+) gradient known to be crucial for tip growth. These studies provide strong evidence for a Rop GTPase-dependent tip growth pathway that couples the control of growth sites with the rate of tip growth through the regulation of tip-localized extracellular Ca(2+) influxes and formation of the tip-high intracellular Ca(2+) gradient in pollen tubes.  相似文献   

5.
A major feature of Alzheimer's disease is the deposition of the amyloid beta peptide (Abeta) in the brain by mechanisms which remain unclear. One hypothesis suggests that oxidative stress and Abeta aggregation are interrelated processes. Protein kinase C, a major neuronal regulatory protein is activated after oxidative stress and is also altered in the Alzheimer's disease brain. Therefore, we examined the effects of Abeta(1-40) peptide on the protein kinase C cascade and cell death in primary neuronal cultures following anoxic conditions. Treatment with Abeta(1-40) for 48 h caused a significant increase in the content and activity of Ca2+ dependent and Ca2+ independent protein kinase C isoforms. By 72 h various protein kinase C isoforms were down-regulated. Following 90 min anoxia and 6 h normoxia, a decrease in protein kinase C isoforms was noticed, independent of Abeta(1-40) treatment. A combination of Abeta(1-40) and 30-min anoxia enhanced cytotoxicity as noticed by a marked loss in the mitochondrial ability to convert 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and by enhanced 4',6-diamidino-2-phenylindole nuclear staining. Phosphorylation of two downstream protein kinase C substrates of apparent molecular mass 80 and 43 kDa, tentatively identified as the myristoyl alanine-rich C-kinase substrate (MARCKS), were gradually elevated up to 72 h upon incubation with Abeta(1-40). Anoxia followed by 30 min normoxia enhanced MARCKS phosphorylation in the membrane but not in the cytosolic fraction. In the presence of Abeta(1-40), phosphorylation of MARCKS was reduced. After 6 h normoxia, MARCKS phosphorylatability was diminished possibly because of protein kinase C down-regulation. The data suggest that a biphasic modulation of protein kinase C and MARCKS by Abeta(1-40) combined with anoxic stress may play a role in Alzheimer's disease pathology.  相似文献   

6.
The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca(2+) ([Ca(2+)](ext))-induced [Ca(2+)](cyt) transients and stomatal closure in Arabidopsis. CAS (Ca(2+) sensing receptor) is a plant-specific putative Ca(2+)-binding protein that was originally proposed to be a plasma membrane-localized external Ca(2+) sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca(2+)-binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca(2+). In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca(2+). Furthermore, using the transgenic aequorin system, we showed that [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients and stomatal closure.  相似文献   

7.
Under stress conditions, mitochondria sense metabolic changes, e.g. in pH, cytoplasmic Ca(2+), energy status, and reactive oxygen species (ROS), and respond by induction of the permeability transition pore (PTP) and by releasing cytochrome c, thus initiating the programmed cell death (PCD) cascade in animal cells. In plant cells, the presence of all the components of the cascade has not yet been shown. In wheat (Triticum aestivum L.) root mitochondria, the onset of anoxia caused rapid dissipation of the inner membrane potential, initial shrinkage of the mitochondrial matrix and the release of previously accumulated Ca(2+). Ca(2+) uptake by mitochondria was dependent on the presence of inorganic phosphate. Treatment of mitochondria with high micromolar and millimolar Ca(2+) (but not Mg(2+)) concentrations induced high amplitude swelling, indicative of PTP opening. Alterations in mitochondrial volume were confirmed by transmission electron microscopy. Mitochondrial swelling was not sensitive to cyclosporin A (CsA)-an inhibitor of mammalian PTP. The release of cytochrome c was monitored under lack of oxygen. Anoxia alone failed to induce cytochrome c release from mitochondria. Oxygen deprivation and Ca(2+) ions together caused cytochrome c release in a CsA-insensitive manner. This process correlated positively with Ca(2+) concentration and required Ca(2+) localization in the mitochondrial matrix. Functional characteristics of wheat root mitochondria, such as membrane potential, Ca(2+) transport, swelling, and cytochrome c release under lack of oxygen are discussed in relation to PCD.  相似文献   

8.
In root hairs of alfalfa (Medicago sativa), the requirement of Ca(2+) for Nod factor signaling has been investigated by means of ion-selective microelectrodes. Measured 50 to 100 microm behind the growing tip, 0.1 microM NodRm-IV(C16:2,S) increased the cytosolic free [Ca2+] by about 0.2 pCa, while the same concentration of chitotetraose, the nonactive glucosamine backbone, had no effect. We demonstrate that NodRm-IV(C16:2,S) still depolarized the plasma membrane at external Ca(2+) concentrations below cytosolic values if the free EGTA concentration remained low (相似文献   

9.
During anoxic incubation, depletion of mitochondrial ATP was followed by release of Ca2+ with concomitant increase in the rate of state 4 respiration due to disruption of the diffusion barrier against protons. The external addition of ATP and its non-metabolizable analog, beta,gamma-methylene adenosine 5'-triphosphate, prevented both the release of Ca2+ and increase in the rate of state 4 respiration. Addition of EGTA, which did not prevent release of the ion, resulted in little increase in the respiration rate. Addition of an inhibitor of mitochondrial phospholipase A2, such as quinacrine, dibucaine, or chlorpromazine, also prevented increase in the respiration rate without affecting Ca2+ release from mitochondria during anoxic incubation. Non-esterified polyunsaturated fatty acids were also found to be liberated from anoxic mitochondria. External addition of the ATP-analog, EGTA, and inhibitors of phospholipase A2 suppressed the liberation of non-esterified polyunsaturated fatty acids. Melittin and Ca2+, which activate phospholipase A2, increased the rate of state 4 respiration and the liberation of fatty acids. These findings support the hypothesis proposed previously that the following sequence changes occurs in mitochondria during anoxia; depletion of ATP, liberation of free calcium from mitochondria, and disruption of the diffusion barrier against H+ of the inner membrane. The results also indicate another event; activation of phospholipase A2 by release Ca2+ which results in H+ leakiness of the inner membrane.  相似文献   

10.
The effects of anoxia were studied in freshly isolated rat hepatocytes maintained in agarose gel threads and perfused with Krebs-Henseleit bicarbonate buffer (KHB). Cytosolic free calcium (Ca2+i) was measured with aequorin, intracellular sodium (Na+i) with SBFI, intracellular pH (pHi) with BCECF, lactic dehydrogenase (LDH) by the increase in NADH absorbance during lactate oxidation to pyruvate, ATP by 31P NMR spectroscopy in real time, and intracellular free Mg2+ (Mg2+i) from the chemical shift of beta-ATP relative to alpha-ATP in the NMR spectra. Anoxia was induced by perfusing the cells with KHB saturated with 95% N2, 5% CO2. After 1 h of anoxia, beta-ATP fell 66%, and 85% after 2 h, while the Pi/ATP ratio increased 10-fold from 2.75 to 28.3. Under control conditions, the resting cytosolic free calcium was 127 +/- 6 nM. Anoxia increased Ca2+i in two distinct phases: a first rise occurred within 15 min and reached a mean value of 389 +/- 35 nM (p less than 0.001). A second peak reached a maximum value of 1.45 +/- 0.12 microM (p less than 0.001) after 1 h. During the first hour of anoxia, Na+i increased from 15.9 +/- 2.4 mM to 32.2 +/- 1.2 mM (p less than 0.001), Mg2+i doubled from 0.51 +/- 0.05 to 1.12 +/- 0.01 mM (p less than 0.001), and pHi decreased from 7.41 +/- 0.03 to 7.06 +/- 0.1 (p less than 0.001). LDH release doubled during the first hour and increased 6-fold during the second hour of anoxia. Upon reoxygenation, ATP, Ca2+i, Mg2+i, Na+i, and LDH returned near the control levels within 45 min. To determine whether the increased LDH release was related to the rise in Ca2+i, and whether the increased Ca2+i was caused by Ca2+ influx, the cells were perfused with Ca(2+)-free KHB (+ 0.1 mM EGTA) during the anoxic period. After 2 h of anoxia in Ca(2+)-free medium, beta-ATP again fell 90%, but Ca2+i, after the first initial peak, fell below control levels, and LDH release increased only 2.7-fold. During reoxygenation, Ca2+i, ATP, Na+i, and LDH returned near the control levels within 45 min. These results suggest that the rise in Ca2+i induced by anoxia is caused by an influx of Ca2+ from the extracellular fluid, and that LDH release and cell injury may be related to the resulting rise in Ca2+i.  相似文献   

11.
Expression of S100A6 (Calcyclin), a member of the S100 family and of Zn(2+)-binding proteins is elevated in a number of malignant tumors. In vitro the protein associates with several actin-binding proteins and annexins in a Ca(2+)-dependent manner. We have now studied the subcellular localization of S100A6 using a new, specific monoclonal antibody. Immunofluorescence microscopy of unfixed, ultrathin, frozen sections demonstrated a dual localization of S100A6 at the nuclear envelope and the plasma membrane of porcine smooth muscle only in the presence of Ca(2+). The same localization was found by immunofluorescence and immunogold electron microscopy as well as by confocal laser scanning microscopy with cultured, fixed, human CaKi-2 and porcine ST interphase cells. Upon cell division, however, S100A6 was found exclusively in the cytoplasm. Cell fractionation studies showed that S100A6 was present in the microsomal fraction in the presence of Ca(2+) and was released from this fraction by the addition of EGTA/EDTA but not by Triton X-100. The data demonstrate that S100A6 is localized both at the plasma membrane and the nuclear envelope in vivo and suggest a Ca(2+)-dependent interaction with annexins or other components of the nuclear envelope.  相似文献   

12.
Ca(2+) channel inactivation in the neurons of the freshwater snail, Lymnaea stagnalis, was studied using patch-clamp techniques. In the presence of a high concentration of intracellular Ca(2+) buffer (5 mM EGTA), the inactivation of these Ca(2+) channels is entirely voltage dependent; it is not influenced by the identity of the permeant divalent ions or the amount of extracellular Ca(2+) influx, or reduced by higher levels of intracellular Ca(2+) buffering. Inactivation measured under these conditions, despite being independent of Ca(2+) influx, has a bell-shaped voltage dependence, which has often been considered a hallmark of Ca(2+)-dependent inactivation. Ca(2+)-dependent inactivation does occur in Lymnaea neurons, when the concentration of the intracellular Ca(2+) buffer is lowered to 0.1 mM EGTA. However, the magnitude of Ca(2+)-dependent inactivation does not increase linearly with Ca(2+) influx, but saturates for relatively small amounts of Ca(2+) influx. Recovery from inactivation at negative potentials is biexponential and has the same time constants in the presence of different intracellular concentrations of EGTA. However, the amplitude of the slow component is selectively enhanced by a decrease in intracellular EGTA, thus slowing the overall rate of recovery. The ability of 5 mM EGTA to completely suppress Ca(2+)-dependent inactivation suggests that the Ca(2+) binding site is at some distance from the channel protein itself. No evidence was found of a role for serine/threonine phosphorylation in Ca(2+) channel inactivation. Cytochalasin B, a microfilament disrupter, was found to greatly enhance the amount of Ca(2+) channel inactivation, but the involvement of actin filaments in this effect of cytochalasin B on Ca(2+) channel inactivation could not be verified using other pharmacological compounds. Thus, the mechanism of Ca(2+)-dependent inactivation in these neurons remains unknown, but appears to differ from those proposed for mammalian L-type Ca(2+) channels.  相似文献   

13.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

14.
C C Subbaiah  D S Bush    M M Sachs 《The Plant cell》1994,6(12):1747-1762
Based on pharmacological evidence, we previously proposed that intracellular Ca2+ mediates the perception of O2 deprivation in maize seedlings. Herein, using fluorescence imaging and photometry of Ca2+ in maize suspension-cultured cells, the proposal was further investigated. Two complementary approaches were taken: (1) real time analysis of anoxia-induced changes in cytosolic Ca2+ concentration ([Ca]i) and (2) experimental manipulation of [Ca]i and then assay of the resultant anoxia-specific responses. O2 depletion caused an immediate increase in [Ca2+]i, and this was reversible within a few seconds of reoxygenation. The [Ca]i elevation proceeded independent of extracellular Ca2+. The kinetics of the Ca2+ response showed that it occurred much earlier than any detectable changes in gene expression. Ruthenium red blocked the anoxic [Ca]i elevation and also the induction of adh1 (encoding alcohol dehydrogenase) and sh1 (encoding sucrose synthase) mRNA. Ca2+, when added along with ruthenium red, prevented the effects of the antagonist on the anoxic responses. Verapamil and bepridil failed to block the [Ca]i rise induced by anoxia and were equally ineffective on anoxic gene expression. Caffeine induced an elevation of [Ca]i as well as ADH activity under normoxia. The data provide direct evidence for [Ca]i elevation in maize cells as a result of anoxia-induced mobilization of Ca2+ from intracellular stores. Furthermore, any manipulation that modified the [Ca]i rise brought about a parallel change in the expression of two anoxia-inducible genes. Thus, these results corroborate our proposal that [Ca]i is a physiological transducer of anoxia signals in plants.  相似文献   

15.
微重力对石刁柏根尖组织和细胞中钙水平及分布的影响   总被引:10,自引:0,他引:10  
徐继  阎田  赵琦 《生物物理学报》1999,15(2):381-386
用焦锑酸钾沉淀法进行了组织和细胞中游离钙的化学定位。用光学显微镜和透射电镜观察石刁柏幼苗在太空飞行后Ca2+沉淀颗粒在根尖组织和细胞内的分布。结果表明,太空飞行15天后,Ca2+在各组织内的分布情况与地面对照无明显差异,但Ca2+的含量明显低于对照。Ca2+在细胞内不同区域的分布在飞行和对照样品中差异十分明显,对照细胞中Ca2+集中在液泡内,其它细胞器中很少见到。飞行幼苗的根尖细胞,液泡中Ca2+很少,并向液泡膜集结,液泡膜内侧和细胞质中的Ca2+明显增多。细胞壁中的Ca2+较对照有明显增加,高尔基体中也有少量钙存在。本文着重讨论了飞行幼苗根尖中Ca2+在细胞内重新分布的可能作用。  相似文献   

16.
Xia JH  Saglio P  Roberts J 《Plant physiology》1995,108(2):589-595
We tested the hypothesis that ATP levels and energy charge determine the resistance of maize (Zea mays) root tips to anoxia. We focused on root tips of whole maize seedlings that had been acclimated to low O2 by exposure to an atmosphere of 3% (v/v) O2 in N2. Acclimated anoxic root tips characteristically have higher ATP levels and energy charge and survive longer under anoxia than nonacclimated tips. We poisoned intact, acclimated root tips with either fluoride or mannose, causing decreases in ATP and energy charge to values similar to or, in most cases, below those found in nonacclimated anoxic tips. With the exception of the highest fluoride concentration used, the poisoned, acclimated tips remained much more tolerant of anoxia than nonacclimated root tips. We conclude that high ATP and energy charge are not components critical for the survival of acclimated root tips during anoxia. The reduced nucleotide status in poisoned, acclimated root tips had little effect on cytoplasmic pH regulation during anoxia. This result indicates that in anoxic, acclimated root tips either cytoplasmic pH regulation is not dominated by ATP-dependent processes or these processes can continue in vivo largely independently of any changes in ATP levels in the physiological range. The role of glycolytic flux in survival under anoxia is discussed.  相似文献   

17.
BACKGROUND AND AIMS: Anoxia-tolerant plant tissues synthesize a number of proteins during anoxia, in addition to the 'classical anaerobic proteins' involved in glycolysis and fermentation. The present study used a model system of rice coleoptile tips to elucidate patterns of protein synthesis in this anoxia-tolerant plant tissue. METHODS: Coleoptile tips 7-11 mm long were excised from intact seedlings exposed to anoxia, or excised from hypoxically pre-treated seedlings and then exposed to anoxia for 72 h. Total proteins or 35S-labelled proteins were extracted, separated using two-dimensional isoelectric focusing/SDS-polyacrylamide gel electrophoresis and analysed using mass spectrometry. KEY RESULTS: The coleoptile tips excised after intact seedlings had been exposed to anoxia for 72 h had a similar proteome to tips that were first excised and then exposed to anoxia. After 72 h anoxia, Bowman-Birk trypsin inhibitors and a glycine-rich RNA-binding protein decreased in abundance, whereas a nucleoside diphosphate kinase and several proteins with unknown functions were strongly enhanced. Using [35S]methionine as label, proteins synthesized at high levels in anoxia, and also in aeration, included a nucleoside diphosphate kinase, a glycine-rich RNA-binding protein, a putative elicitor-inducible protein and a putative actin-depolymerizing factor. Proteins synthesized predominately in anoxia included a pyruvate orthophosphate dikinase (PPDK), alcohol dehydrogenase 1 and 2, fructose 1,6-bisphosphate aldolase and a protein of unknown function. CONCLUSION: The induction of PPDK in anoxic rice coleoptiles might, in combination with pyruvate kinase (PK), enable operation of a 'substrate cycle' producing PPi from ATP. Production of PPi would (a) direct energy to crucial transport processes across the tonoplast (i.e. the H+-PPiase); (b) be required for sucrose hydrolysis via sucrose synthase; and (c) enable acceleration of glycolysis, via pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP) acting in parallel with phosphofructokinase (PFK), thus enhancing ATP production in anoxic rice coleoptiles; ATP production would need to be increased if there was a substantial requirement for PPi.  相似文献   

18.
Calcium is a key regulator of pollen tube growth, but little is known concerning the downstream components of the signaling pathways involved. We identified two pollen-expressed calmodulin-like domain protein kinases from Petunia inflata, CALMODULIN-LIKE DOMAIN PROTEIN KINASE1 (Pi CDPK1) and Pi CDPK2. Transient overexpression or expression of catalytically modified Pi CDPK1 disrupted pollen tube growth polarity, whereas expression of Pi CDPK2 constructs inhibited tube growth but not polarity. Pi CDPK1 exhibited plasma membrane localization most likely mediated by acylation, and we present evidence that suggests this localization is critical to the biological function of this kinase. Pi CDPK2 substantially localized to as yet unidentified internal membrane compartments, and this localization was again, at least partially, mediated by acylation. In contrast with Pi CDPK1, altering the localization of Pi CDPK2 did not noticeably alter the effect of overexpressing this isoform on pollen tube growth. Ca(2+) requirements for Pi CDPK1 activation correlated closely with Ca(2+) concentrations measured in the growth zone at the pollen tube apex. Interestingly, loss of polarity associated with overexpression of Pi CDPK1 was associated with elevated cytosolic Ca(2+) throughout the bulging tube tip, suggesting that Pi CDPK1 may participate in maintaining Ca(2+) homeostasis. These results are discussed in relation to previous models for Ca(2+) regulation of pollen tube growth.  相似文献   

19.
Arabidopsis mutants with increased sensitivity to aluminum.   总被引:4,自引:1,他引:3       下载免费PDF全文
Al-sensitive (als) mutants of Arabidopsis were isolated and characterized with the aim of defining mechanisms of Al toxicity and resistance. Most als mutants selected on the basis of root growth sensitivity to Al were recessive, and together the mutants constituted eight complementation groups. Also, in most als mutants, Al sensitivity appeared to be specific for Al relative to La (another trivalent cation), except als2, which was more sensitive to La than wild type. The tendency of roots on mutant seedlings to accumulate Al was examined by staining with morin and hematoxylin, dyes used to indicate the presence of Al. A significant increase in morin staining was observed in als5, consistent with its increased sensitivity to Al. Unexpectedly, als7 and als4 showed less morin staining, suggesting that the roots on these mutants accumulate less Al than wild type seedlings after exposure to Al-containing solutions. Roots of wild-type seedlings produce callose in response to AlCl3 concentrations that inhibit root growth. Only als5 accumulated more callose than wild type in response to low levels (25 mu M) of AICI3 However, als4 and als7 did not accumulate callose at this AlCl3 concentration even though root growth was significantly inhibited. The lack of callose accumulation in als4 and als7 suggests that there is not an obligatory relationship between callose deposition and Al-induced inhibition of root growth.  相似文献   

20.
Abscisic Acid induces anaerobiosis tolerance in corn   总被引:6,自引:3,他引:3       下载免费PDF全文
Flooding is a frequently occurring environmental stress that can severely affect plant growth. This study shows that treatment of corn (Zea mays L.) seedlings with abscisic acid (ABA) increases their tolerance to anoxia 10-fold over untreated seedlings and twofold over seedlings treated with water. Corn seedlings stressed anoxically for 1 day showed only 8% survival when planted in vermiculite. Pretreatment of root tips with 100 micromolar ABA or water for 24 hours before the 1 day anoxic stress increased the anoxic survivability of seedlings to 87% and 47%, respectively. Cycloheximide (5 milligrams per liter), added together with ABA, reduced the seedling survival rate, indicating that the induction of anoxic tolerance in corn by ABA was partly a result of the synthesis of new proteins. ABA treatment induced a threefold increase in alcohol dehydrogenase enzyme activity in corn roots. However, after 24 h of anoxia, alcohol dehydrogenase enzyme activity between the ABA-pretreated and non-pretreated corn roots was not significantly different. The results indicated that ABA played an important role in inducing anoxic tolerance in corn and that the induced tolerance was probably mediated by an increase in alcohol dehydrogenase enzyme activity before the anoxic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号