首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. We have previously reported the cloning and characterisation of the koala CYP4A15, the first reported member of the CYP4 family from marsupials, and have demonstrated important species differences in CYP4A activity and tissue expression. In the present study, the cloning of CYP4B1 in the wallaby (Macropus eugenii) and their expression across marsupials is described. Rabbit anti-mouse CYP4B1 antibody detected immunoreactive proteins in lung and liver microsomes from all test marsupials, with relative weak signal detected from the koala, suggesting a species-specific expression. Microsomal 2-aminofluorene bio-activation (a CYP4B1 marker) in wallaby lung was comparable to that of rabbit, with significant higher activities detected in wallaby liver and kidneys compared to rabbit. A 1548 bp wallaby lung CYP4B complete cDNA, designated CYP4B1, which encodes a protein of 510 amino acids and shares 72% nucleotide and 69% amino acid sequence identity to human CYP4B1, was cloned by polymerase chain reaction approaches. The results demonstrate the presence of wallaby CYP4B1 that shares several common features with other published CYP4Bs; however the wallaby CYP4B1 cDNA contains four extra amino acid residues at the NH2-terminal, a fundamentally conserved transmembrane anchor of all eukaryote CYPs.  相似文献   

3.
4.
5.
目的克隆我国资源小型猪品系巴马香猪肝脏中的CYP3A88基因,并进行生物信息学分析。方法应用RACE(Rapid Amplification of cDNA Ends)技术对其全长进行扩增,测序,利用Internet和GenBank数据库对其序列进行生物信息学分析。结果首次克隆并鉴定了我国资源小型猪品系巴马香猪肝脏中CYP3A88(GenBank登录号:EF625347)的编码区,获得大小为1965bp的全长cDNA,编码区长为1512bp,编码503个氨基酸;比较核苷酸序列,与小型猪CYP3A39相似性高达94%,而与人等其它动物的CYP3A相似性则在86%以下;推导和分析氨基酸序列表明,与小型猪CYP3A其它成员(CYP3A39、CYP3A29、CYP3A22)进行对比,其相似性分别为92%,89%,80%,而将小型猪与人的CYP3A分别比对,小型猪CYP3A88与人CYP3A4相似性最高,为77%;对其二级结构预测,它可能含12个α螺旋,4个β折叠;经NCBI上的CDD程序分析可知,其39~491氨基酸区域为P4503A亚家族保守结构区域;经聚类分析,小型猪和狗的CYP3A与人有较近的进化关系;通过同源建模法对其在线建模,人CYP3A4晶体结构作为其模建模型,得到了其经典的三维结构。结论在猪CYP3A家族四个基因中,CYP3A88在序列和高级结构上均与人CYP3A4的最为相似。  相似文献   

6.
CYP3A是I相解毒酶系CYP450家族中的重要成员,在肝脏解毒过程中发挥重要作用。首次克隆了白鲢肝脏CYP3A基因并研究了毒死蜱对该基因表达的影响。生物信息学分析预测结果表明,CYP3A基因编码513个氨基酸,其蛋白质分子量为58.8 ku,理论等电点为7.96。该蛋白是一个稳定蛋白且具有一定的亲水性。二级结构预测可知,CYP3A包含45.2%的α-螺旋、12.3%的延伸链、4.3%的β-折叠和38.2%的无规则卷曲,具有2个显著的跨膜结合区。急性毒性实验结果表明,毒死蜱对白鲢具有很高的毒性,其96h LC50为0.172 mg/L。另外,荧光定量PCR检测发现,毒死蜱对白鲢CYP3A基因表达有明显的抑制作用。    相似文献   

7.
Deficiency of drug glucuronidation in the cat is one of the major reasons why this animal is highly sensitive to the side effects of drugs. The characterization of cytochrome P450 isoforms belonging to the CYP1A subfamily, which exhibit important drug oxidation activities such as activation of pro-carcinogens, was investigated. Two cDNAs, designated CYP1A-a and CYP1A-b, corresponding to the CYP1A subfamily were obtained from feline liver. CYP1A-a and CYP1A-b cDNAs comprise coding regions of 1554 bp and 1539 bp, and encode predicted amino acid sequences of 517 and 512 residues, respectively. These amino acid sequences contain a heme-binding cysteine and a conserved threonine. The cDNA identities, as well as the predicted amino acid sequences containing six substrate recognition sites, suggest that CYP1A-a and CYP1A-b correspond to CYP1A1 and CYP1A2, respectively. This was confirmed by the kinetic parameters of the arylhydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities of expressed CYPs in yeast AH22 cells and by the tissue distribution of each mRNA. However, theophylline 3-demethylation is believed to be catalyzed by CYP1A1 in cats, based on the high V(max) and low K(m) seen, in contrast to other animals. Because feline CYP1A2 had a higher K(m) for phenacetin O-deethylase activity with acetaminophen, which cannot be conjugated with glucuronic acid due to UDP-glucuronosyltransferase deficiency, it is supposed that the side effects of phenacetin as a result of toxic intermediates are severe and prolonged in cats.  相似文献   

8.
9.
10.
11.
Long-term culture of hepatocytes has been challenged by the loss of differentiated functions. In particular, there is a rapid decline in cytochrome P450 (CYP). In this study, we cocultured rat hepatocytes with 3T3 fibroblasts for 10 days, and examined hepatocyte viability, morphology, and expression of CYP3A. Terfenadine was incubated with the cultures, and its biotransformation was quantitatively analyzed by HPLC. Terfenadine is metabolized by two major pathways:C-hydroxylation to an alcohol metabolite which is further oxidized to a carboxylic acid, andN-dealkylation to azacyclonol. In rat liver, only theN-dealkylation pathway appears to be mediated by CYP3A since anti-rat CYP3A antibody inhibited azacyclonol but not alcohol metabolite formation in incubations of terfenadine with liver microsomes. Freshly isolated rat hepatocytes were seeded on top of confluent 3T3 cells. Cultures were maintained in Williams' E medium supplemented with 10% fetal bovine serum and either 0.1 mol/L or 5 mol/L dexamethasone. In pure hepatocyte cultures, viability, as determined by lactate dehydrogenase (LDH) activity, decreased steadily to less than 30% of initial levels by day 10. In cocultures, LDH activity remained high and was 70% of initial levels on day 10. The half-life of terfenadine disappearance was optimally maintained in cocultures treated with 5 mol/L dexamethasone, and was associated with the increased formation of azacyclonol. On day 5, nearly 50% of added 5 mol/L terfenadine was converted to azacyclonol within 6 h, whereas the conversion was only 4% on day 1. Western and RNA-slot blot analyses confirmed that treatment with 5 mol/L dexamethasone induced CYP3A mRNA expression and CYP3A protein expression. This coculture system could offer a useful approach in the study of drugs and xenobiotics metabolized by CYP3A.Abbreviations BSA bovine serum albumin - CYP cytochrome P450 - DMSO dimethyl sulfoxide - LDH lactate dehydrogenase - PCN pregnenolone-16-carbonitrile - SDS sodium dodecyl sulfate - SSC saline sodium citrate  相似文献   

12.
13.
On the basis of the detection of an expressed sequence tag ('EST') similar to the human cytochrome P450 3A4 cDNA, we have identified a novel member of the human cytochrome P450 3A subfamily. The coding region is 1512-bp long and shares 84, 83, and 82% sequence identity on the cDNA level with CYP3A4, 3A5, and 3A7, respectively, with a corresponding amino acid identity of 76, 76, and 71%. Quantitative real time based mRNA analysis revealed CYP3A43 expression levels at about 0.1% of CYP3A4 and 2% of CYP3A5 in the liver, with significant expression in 70% of the livers examined. Gene specific PCR of cDNA from extrahepatic tissues showed, with the exception of the testis, only low levels of CYP3A43 expression. The CYP3A43 cDNA was heterologously expressed in yeast, COS-1 cells, mouse hepatic H2.35 cells and in human embryonic kidney (HEK) 293 cells, but in contrast to CYP3A4 which was formed in all cell types, no detectable CYP3A43 protein was produced. This indicates a nonfunctional protein or specific conditions required for proper folding. It is concluded that CYP3A43 mRNA is expressed mainly in liver and testis and that the protein would not contribute significantly to human drug metabolism.  相似文献   

14.
Hepatic P450s, named M-3 and M-4 were purified from phenobarbitone pretreated rhesus monkey. These demonstrated polypeptide molecular mass of 50 and 52.5 kDa and specific content of 12 and 20 nmol P450/mg protein, respectively. Both the isozymes demonstrated low spin state of heme. Antibodies raised against M-3 inhibited the activity of aminopyrine, erythromycin and ethylmorphine N-demethylase in the microsomes obtained from PB pretreated rhesus monkey by 76, 40 and 35%, respectively. M-4 did the same by 69, 85 and 79%, respectively. These observations indicated M-3 and M-4 to be the members of CYP2C and 3A subfamilies, respectively. These results were substantiated by the observations that M-3 metabolized aminopyrine whereas M-4 metabolized aminopyrine, erythromycin and ethylmorphine in the reconstituted system. Microsomal lipids and cytochrome b5 enhanced the rate of these reactions. Further confirmation to the identity of these isozymes was provided by N-terminal amino acid sequences. The first 10 N-terminal amino acid residues of M-3 were 90% similar to CYP2C20 and 2C9 and that of M-4 were 100 and 90% similar to CYP3A8 and 3A5, respectively. In conclusion, two isozymes of hepatic P450 purified from PB pretreated rhesus monkey belong to CYP2C and 3A subfamilies.  相似文献   

15.
Phylogenetic Analysis of the Cytochrome P450 3 (CYP3) Gene Family   总被引:2,自引:0,他引:2  
Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication. Phylogenetic analyses suggest two CYP3A gene duplication events early in rodent history, with the rat CYP3A9 and mouse Cyp3a13 clade having a sister relationship to all other rodent CYP3A genes. In primate history, the human CYP3A43 gene appears to have a sister relationship to all other known primate CYP3A genes. Other, more recent gene duplications are hypothesized to have occurred independently within the human, pig, rat, mouse, guinea pig, and fish genomes. Functional analyses suggest that gene duplication is strongly tied to acquisition of new function and that convergent evolution of CYP3A function may be frequent among independent gene copies. Current address (Rachel L. Cox): Laboratory of Aquatic Biomedicine, Marine Biology Laboratory, Woods Hole, MA 02543, USA  相似文献   

16.
Potential mechanisms were investigated whereby CYP2B18, a cytochrome P450 gene exhibiting high constitutive expression but only low levels of phenobarbital-inducibility in the guinea pig liver, may be differentially regulated versus the highly inducible rat CYP2B2 gene. To comparatively assess potential regulatory sequences associated with CYP2B18, a guinea pig genomic library was screened enabling isolation of the CYP2B18 gene. The genomic screening process resulted in the identification of at least four closely-related CYP2B18 genes, designated here as CYP2B18A-D. Of these isolates, CYP2B18A exhibited sequence identical to that of the CYP2B18 cDNA. Further, the deduced amino acid sequence of the CYP2B18 cDNA was identical to that of N-terminal and internally-derived peptide sequences obtained in this investigation from CYP2B18 protein isolated from guinea pig liver. Genomic structural sequences were derived for CYP2B18A, together with the respective 5'-upstream and intronic regions of the gene. Comparison of the CYP2B18A and CYP2B2 gene sequences revealed the lack of repetitive LINE gene sequences in CYP2B18A, putative silencing elements that effect neighboring genes, although these sequences were present in both 5'-upstream and 3'-downstream regions of CYP2B2. We determined that the phenobarbital-responsive enhancer module was absent from the 5'-upstream region as well as the intronic regions of CYP2B18A gene. We hypothesize that the compromised phenobarbital inducibility of CYP2B18A stems from its lack of a functional phenobarbital responsive enhancer module.  相似文献   

17.
To date, many studies have been conducted using 25-hydroxycholesterol, which is a potent regulator of lipid metabolism. However, the origins of this oxysterol have not been entirely elucidated. Cholesterol 25-hydroxylase is one of the enzymes responsible for the metabolism of 25-hydroxycholesterol, but the expression of this enzyme is very low in humans. This oxysterol is also synthesized by sterol 27-hydroxylase (CYP27A1) and cholesterol 24-hydroxylase(CYP46A1), but it is only a minor product of these enzymes. We now report that CYP3A synthesizes a significant amount of 25-hydroxycholesterol and may participate in the regulation of lipid metabolism. Induction of CYP3A by pregnenolone-16α-carbonitrile caused the accumulation of 25-hydroxycholesterol in a cell line derived from mouse liver. Furthermore, treatment of the cells with troleandomycin, a specific inhibitor of CYP3A, significantly reduced cellular 25-hydroxycholesterol concentrations. In cells that overexpressed human recombinant CYP3A4, the activity of cholesterol 25-hydroxylation was found to be higher than that of cholesterol 4β-hydroxylation, a known marker activity of CYP3A4. In addition, 25-hydroxycholesterol concentrations in normal human sera correlated positively with the levels of 4β-hydroxycholesterol (r = 0.650, P < 0.0001, n = 78), but did not significantly correlate with the levels of 27-hydroxycholesterol or 24S-hydroxycholesterol. These results demonstrate the significance of CYP3A on the production of 25-hydroxycholesterol.  相似文献   

18.
A 2,037 bp CYP1A1 cDNA (GenBank AF072899) was cloned through screening of a lambdaZipLox cDNA library constructed from the liver of a leaping mullet (Liza saliens) fish captured from Izmir Bay on the Aegean coast of Turkey using rainbow trout CYP1A1 cDNA as a probe. This clone has a 130 bp 5'-flanking region, a 1,563 bp open reading frame (ORF) encoding a 521-amino acid protein (58,972 Da), and a 344 bp 3'-untranslated region without a poly (A) tail. Alignment of the deduced amino acids of CYP1A1 cDNAs showed 58% and 69-96% identities with human and 12 other fish species, respectively. Southern blot analysis suggested that this CYP1A1 cDNA was from a single-copy gene. Based on the comparison with CYP1A1 genes reported for fish and mammals, the leaping mullet CYP1A1 gene is probably split into 7 exons. The intron insertion sites were predicted. Alignment of the CYP1A1 cDNA encoded amino acids from 13 fish and 7 mammalian species disclosed differences in highly conserved amino acids between aquatic and land vertebrates. The possible associated secondary structure; conserved motifs and substrate-binding sites were discussed. The phylogenetic relationships of CYP1A1s among 13 fish species were analyzed by a distance method.  相似文献   

19.
In this work, we examined the impact of polymorphism in the cytochrome P450 (CYP) 3A5 gene, CYP3A5*1 (6986A > G, rs 776746), on the reduction in the lipid levels caused by simvastatin and atorvastatin. We studied 350 hyperlipidemic patients who received 10-40 mg of atorvastatin (n = 175) or simvastatin (n = 175) daily. Genotyping for CYP3A5 was done by PCR-RFLP analysis. Differences in the lipid profile before and after treatment were expressed as the % difference. The frequency of CYP3A5polymorphism was 13.4% for heterozygotes and 86.6% for homozygotes. Comparison of the responses to same dose of each drug showed that the highest % difference was associated with total cholesterol (TC) in subjects receiving atorvastatin 40 mg compared with simvastatin 40 mg (p = 0.048). However, comparison of the responses to equivalent doses of atorvastatin vs. simvastatin revealed no difference in the % change in any of the lipid parameters examined. In individuals with the same CYP3A5 genotype, a head to head comparison of the efficacy of the same dose of simvastatin vs. atorvastatin revealed an advantage for atorvastatin. For equivalent doses of atorvastatin vs. simvastatin there was no difference in the % change in any of the lipid parameters examined. Within the same genotype there was a significant difference in the % change related to the drug treatment.  相似文献   

20.
This study reports that dexamethasone (DEX) significantly induces CYP3A11, CYP3A13 and CYP3A25 mRNA expression in male and female 4 days, 3 weeks and 18 weeks old C57BL/6J mice. Furthermore, CYP3A activity, as measured by erythromycin-N-demethylation, is also significantly increased. PXR, RXRalpha and CAR are known to be involved in the induction of CYP3As. Here we report nuclear receptors PXR and RXRalpha but not CAR demonstrate gender- and age-dependent expression. Also, treatment of C57BL/6J mice with DEX induces PXR but not RXRalpha or CAR. In summary, we demonstrate DEX is not only able to up-regulate CYP3A expression and activity, but also the nuclear receptor PXR through which it may exert this effect. Furthermore, the gender- and age-dependent pattern of basal PXR and RXRalpha expression is similar to the 3 CYP3As analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号