首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.  相似文献   

2.
The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.  相似文献   

3.
《IRBM》2022,43(5):456-469
ObjectivesMagnesium alloys are the potential candidate for metallic implants due to their excellent mechanical characteristics, biodegradable nature, and properties similar to human bone. However, a high degradation rate is primary obstacle in implementing these alloys as biodegradable orthopedic implants. Powder-mixed electric discharge machining (PMEDM) is an emerging method of surface modification of metallic alloys that can be implemented to improve the corrosion resistance of Mg alloys. Therefore, PMEDM using zirconium (Zr) and manganese (Mn) powder particles has been proposed to modify the surface characteristics of Mg-4Zn alloy.Materials and MethodsIn the present work, Zr and Mn powders have been used in varying concentrations during PMEDM of Mg-4Zn alloy. Experiments were conducted as per mixed design L18 orthogonal array (OA). Taguchi and Grey Relational Analysis (GRA) have been used to optimize the process parameters. Analysis of response characteristics, namely material removal rate (MRR), surface roughness (SR), and thickness of the alloyed layer (TAL), has been carried out at different values of input variables (like powder additives (Pa), powder concentration (Cp), peak current (Ip), pulse on time (Ton) and duty cycle (DC)). The corrosion analysis was carried out by immersing the specimen (machined at an optimized setting) in simulated body fluid (SBF).ResultsIt is observed from the analysis that Cp, Ip, and Ton play a pivotal role in evaluating response characteristics. The favorable setting suggested by the gray approach is Pa: Zr; Cp: 2 g/l; Ip: 4A; Ton: 50 μs; DC: 80%, while responses at this setting are confirmed by confirmation experiments with MRR: 32.14 mm3/min; SR: 5.578 μm and TAL: 8.28 μm. The immersion test signifies that the corrosion rate (CR) of PMEDMed sample (3.20 mm/year) is 40.74% lesser than the corrosion rate of polished sample (5.40 mm/year).ConclusionZr powder shows better performance in terms of higher MRR, lower SR and higher TAL as compared to Mn powder during the PMEDM process. The corroded surface of polished sample exhibited larger size micro pits and cracks than the machined sample, which concluded that surface modification of MZ-4Zn alloy via PMEDM is a powerful tool to enhance its corrosion resistance.  相似文献   

4.
钛合金和钴铬合金表面白色念珠菌粘附的研究   总被引:3,自引:0,他引:3  
目的比较钛合金(Ti-6Al-4V)和钴铬合金(Chromium-Cobaltalloy)表面白色念珠菌粘附能力的大小,研究表面粗糙度与细菌粘附的关系。方法将不同表面粗糙度的钛合金和钴铬合金试件进行白色念珠菌体外粘附试验,采用菌落形成计数法测定试件表面的细菌粘附量。结果各钛合金试件组的细菌粘附量均少于相同表面粗糙度的钴铬合金试件组,两种金属试件表面的细菌粘附量均随表面粗糙度的增大而增加。结论钛合金较钴铬合金更能减少由白色念珠菌引起的义齿性口炎等并发症,同时修复体表面严格的研磨抛光也能有效减少这些并发症。  相似文献   

5.
Variations in the levels of dissolved organic compounds in Loch Etive were studied during 1971. The amount of dissolved organic nitrogen, dissolved organic phosphorus, and Gelbstoff were markedly affected by the freshwater run-off. The surface (1 m) concentrations of the dissolved organic nitrogen and dissolved organic phosphorus throughout the year ranged from 3.0–9.0 μg-at. NO3-N/l and 0.02-0.45 μg-at. PO4-P/1, respectively. The surface levels of Gelbstoff during the year as measured by the optical density of the water at 320 nm and 400 nm fluctuated between 0.08-0.490 and 0.020-0.140, respectively. In the bottom layers of the Lower Basin (40–50 m) the optical density of the water at 320 nm and 400 nm throughout the year ranged between 0.060-0.150 and 0.010-0.047, in the Deep Basin (115–140 m) the values were between 0.086-0.130 and 0.018-0.037 and at the Head of the Loch, (25–35 m) they fluctuated between 0.080-0.229 and 0.017-0.052, respectively. The vertical concentrations of the dissolved organic nitrogen, dissolved organic phosphorus and Gelbstoff decreased irregularly from the surface downward. The concentrations of the dissolved organic nitrogen at the surface of the Lower Basin during the year were similar to those found at 40–50 m. In the Deep Basin and at the Head of the Loch the surface values were higher than those observed at 115–140 m and 25–35 m, respectively. The concentrations of the dissolved organic phosphorus at the surface of the Lower Basin were close to those found at the bottom (40–50 m). In the Deep Basin the surface values were higher than those at 115–140 m and at the Head of the Loch the surface concentrations were variably higher or lower than the bottom layers (25–35 m). The ratio of the optical density at 320 nm and 400 nm in the photic zone (1 m, 4–5 m, and 10 m) during the year ranged between 3.2–4.0 with the lowest ratios in winter and autumn. A similar pattern was observed in the water column of the Lower Basin and at the Head of the Loch. In the deeper strata of the Deep Basin, ratios were usually between 4.0–5.3 for most of the year. A comparison between the optical densities of the surface water during winter and autumn and that at 115–140 m (Deep Basin), suggests that the fraction more liable to precipitate is found in the visible region of the spectrum (400 nm).  相似文献   

6.
Designing a nanocomposite that accumulates biocompatibility and antimicrobial behaviour is an essential requirement for biomedical applications. Hydroxyapatite (HAP), graphene oxide, and vivianite in one ternary nanocomposite with three phases and shapes led to an increase in cell viability to 97.6% ± 4 for the osteoblast cells in vitro. The obtained nanocomposites were investigated for their structural features using X-ray diffraction, while the microstructure features were analyzed using a scanning electron microscope (SEM) and a transmission electron microscope. The analysis showed a decrease in the crystal size to 13 nm, while the HAP grains reached 30 nm. The elongated shape of vivianite reached 200 nm on SEM micrographs. The monoclinic and hexagonal crystal systems of HAP and vivianite were presented in the ternary nanocomposite. The maximum roughness peak height reached 236.1 nm for the ternary nanocomposite from 203.3 nm, while the maximum height of the roughness parameter reached 440.7 nm for the di-nanocomposite of HAP/graphene oxide from 419.7 nm. The corrosion current density reached 0.004 μA/cm2. The ferrous (Fe2+) and calcium (Ca2+) ions released were measured and confirmed. Therefore, the morphology of the nanocomposites affected bacterial activity. This was estimated as an inhibition zone and reached 14.5 ± 0.9 and 13.4 ± 1.1 mm for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h. The increase in viability and the antibacterial activity refer to the compatibility of the nanocomposite in different medical applications.  相似文献   

7.
Shark skin denticles (scales) are diverse in morphology both among species and across the body of single individuals, although the function of this diversity is poorly understood. The extremely elongate and highly flexible tail of thresher sharks provides an opportunity to characterize gradients in denticle surface characteristics along the length of the tail and assess correlations between denticle morphology and tail kinematics. We measured denticle morphology on the caudal fin of three mature and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface profilometry, we quantified 3D-denticle patterning and texture along the tail of threshers (27 regions in adults, and 16 regions in embryos). We report that tails of thresher embryos have a membrane that covers the denticles and reduces surface roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails. There is no gradient down the tail in roughness for the middle or trailing edge regions and hence no correlation with kinematic amplitude or inferred magnitude of flow separation along the tail during locomotion. Along the length of the tail there is a leading-to-trailing-edge gradient with larger leading edge denticles that lack ridges (average roughness = 9.6 μm), and smaller trailing edge denticles with 5 ridges (average roughness = 5.7 μm). Thresher shark tails have many missing denticles visible as gaps in the surface, and we present evidence that these denticles are being replaced by new denticles that emerge from the skin below.  相似文献   

8.
Physico-chemical properties of a bioorganic char were modified by pyrolysis in the presence of NaOH, and with subsequent physical activation of carbonaceous species with CO2 a value-added activated carbon was fabricated. Bioorganic char is produced as a co-product during the production of bio-fuel from the pyrolysis of chicken litter. Untreated char contains approximately 37 wt% of C and approximately 43-45 wt% of inorganic minerals containing K, Ca, Fe, P, Cu, Mg, and Si. Carbonization and chemical activation of the char at 600 degrees C in the presence of NaOH in forming gas (4% H2 balanced with Ar) produced mainly demineralized activated carbon having BET (Brunauer, Emmett, and Teller) surface area of 486 m2/g and average pore size of 2.8 nm. Further physical activation with CO2 at 800 degrees C for 30 min resulted in activated carbon with BET surface area of 788 m2/g and average pore size of 2.2 nm. The mineral content was 10 wt%. X-ray photoelectron spectroscopy (XPS) indicated that the latter activation process reduced the pyrrolic- and/or pyridonic-N, increased pyridinic-N and formed quaternary-N at the expense of pyrrolic- and/or pyridonic-N found in the untreated char.  相似文献   

9.
目的:建立测定丙酮酸乙酯的含量测定方法。方法:采用气相色谱法,以环戊酮为内标物。色谱柱为VARIAN CP7502(25 m×0.25 mm×0.25μm),柱温115℃,进样口温度210℃,FID检测器温度210℃,氮气(载气)流量为30 ml.min-1;氢气(燃气)流量为40 ml.min-1;空气(助燃气)流量为400 ml.min-1,分流比1:100。结果:EP进样浓度在0.50035 mg.ml-1~9.0063 mg.ml-1范围内与峰面积积分呈良好的线性关系(r2=0.9996),平均加样回收率为99.76%,RSD为0.46%。结论:本方法简便、快速、准确、重复性好,可用于丙酮酸乙酯注射液的质量控制。  相似文献   

10.
Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 μm×50 μm×2.5 μm. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy.  相似文献   

11.
Huang CF  Chiang HJ  Lan WC  Chou HH  Ou KL  Yu CH 《Biofouling》2011,27(5):449-457
The as-quenched (AQ) microstructure of the Ag-containing alloys was found to be essentially a mixture of austenite (γ) and Ag phases. The Ag phase precipitates had a face-centered-cubic structure and lattice parameter a = 4.09 ?. When the alloy contained Ag ≥0.2 wt%, the mechanical properties were slightly enhanced because of the precipitate strengthening by the Ag phase precipitates. Moreover, the Ag-containing alloys exhibited ductile fracture after tensile testing. The results of an antibacterial test revealed that the Ag phase precipitates play a key role in the antibacterial mechanism of Ag-containing alloys: Ag(+) ions released from the Ag phase precipitates can kill bacteria. It is suggested that as AISI 316L alloy has an Ag content ≥0.2 wt%, it will have excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an antibacterial rate of nearly 100%.  相似文献   

12.
The aim of the study was to compare the connective tissue response of Lewis rats to Ti, NiCr and AgPd alloys. It was found that implants were covered by collagen-rich, well vascularized capsules. Titanium was covered by the thinnest capsule (57 ± 20 μm) and AgPd alloy was covered by the thickest capsule (239 ± 50 μm). The PCNA+ cell prevalence in the capsules was lower for titanium than for AgPd and NiCr. Mast cells formed a gradient to a depth of 1200 μm only for titanium implants. Cells with brown to black silver granules in the cytoplasm were observed close to AgPd implants. The results suggest that titanium implants induce a weaker connective tissue response than implants made from NiCr and AgPd alloys.  相似文献   

13.
Zhang R  Hummelgård M  Olin H 《PloS one》2012,7(1):e30469
Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA) method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ~80 nm) and micrometer (width ~20 μm), to decimeter (length ~0.15 m). The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.  相似文献   

14.
Seven thrush species (Turdidae) from Costa Rica were examined for intestinal parasites; 21 of the 84 (25%) birds sampled were positive for a new species of Isospora. Oocysts of Isospora zorzali n. sp. have thin, smooth, double, and colorless walls; they measure 19.7 ± 1.5 μm × 18.6 ± 1.4 μm (16-24 μm × 15-21 μm), with an average length-width ratio of 1.1 μm. Sporocysts are ovoid, measure 8.5 ± 1.1 μm × 14.5 ± 1.7 μm (7-11 μm × 11-18 μm) with an average length-width ratio of 1.7 μm. A nipple-like stieda body continuous with the sporocyst wall is present, but no substieda body was observed. A sporocyst residuum consisting of large equal sized granules was observed either clumped together or diffusely. The sporocysts fill the entire oocysts with little to no open space observed. This is the first report of Isospora species from any of the sampled host species and also the first report from any species of thrush in Costa Rica.  相似文献   

15.
doi:10.1111/j.1741‐2358.2009.00282.x
Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins Objective: The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. Methods: A total of 180 circular specimens (30 mm × 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (μm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 × 2), two‐way analysis of variance (anova ), followed by Tukey’s test. Results: For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 μm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 μm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 μm) presented no statistically significant difference after 30 days. Conclusions: This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.  相似文献   

16.
The electro-oxidation of epinephrine (EP), uric acid (UA), folic acid (FA), and their mixture has been studied by modified carbon nanotube paste electrode of 2,2'-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. This modified electrode exhibited potent and persistent electron mediating behavior followed by well-separated oxidation peaks towards EP, UA and FA with activation overpotential. For the ternary mixture containing EP, UA and FA the three compounds can be well separated from each other at the scan rate of 20mVs(-1). The obtained catalytic peak current, was linearly dependent on the EP, UA and FA concentrations in the range of 0.7-1200muM, 25-750muM and 15-800muM and the detection limits for EP, UA and FA were 0.216+/-0.004, 8.8+/-0.2 and 11.0+/-0.3muM, respectively. The diffusion coefficient (D), and the kinetic parameters such as electron transfer coefficient, (alpha) and heterogeneous rate constant, (k') for EP were also determined using electrochemical approaches. The modified electrode showed good sensitivity, selectivity and stability, and was employed for the determination of EP, UA and FA in the real samples.  相似文献   

17.
A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core.  相似文献   

18.
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (τ), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey's test and correlation tests were performed using Pearson's rank correlation (α = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 ± 9.05 μm), Co-Cr (66.41 ± 35.47 μm) and Ni-Cr-Ti (32.20 ± 24.47 μm). Stresses generated by Co-Cr alloy (τ = 7.70 ± 2.16 kPa) were significantly higher than those generated by CP Ti (τ = 5.86 ± 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (τ = 5.74 ± 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials.  相似文献   

19.
Nanoindentation has been widely used as a means to measure the micro-mechanical properties of bone and to predict the macroscopic properties. The role of indent depth and indenter tip geometry in measuring the hierarchical properties of bone tissue was explored experimentally using a range of spherical indenter tips of R=5, 25, 65, and 200 μm. Nanoindentation arrays, not targeted to fall on specific structures or locations, enabled statistical sampling of osteons within PMMA-embedded, bovine, cortical bone on a single sample to a range of maximum displacements (minimum of 100 nm and maximum of 2000 nm). Elastic finite element models were then utilized to isolate the contributions of indenter tip radius, contact area, and position within the lamellar structure in comparison to the experimental results. For a small, R=5 μm indenter tip, indentation modulus consistently increased with contact depth and increased plastic deformation, resulting in an artificial increase in elastic properties. While larger radius tips (R=25, 65, and 200 μm) did not enable evaluation of a high spatial resolution on the surface, they produced data that was representative of the lower load and contact depth measurements with the smaller tip. However the sensitivity to mechanical property variations across the 2-D surface of the material was lost with increase in indenter tip size. Correspondingly, measurement variance was also decreased as the volume contributing to the indent response represented an average of surface roughness, varying mineral content, defects, and underlying tissue type and structure.  相似文献   

20.
The as-quenched (AQ) microstructure of the Ag-containing alloys was found to be essentially a mixture of austenite (γ) and Ag phases. The Ag phase precipitates had a face-centered-cubic structure and lattice parameter a = 4.09 Å. When the alloy contained Ag ≥0.2 wt%, the mechanical properties were slightly enhanced because of the precipitate strengthening by the Ag phase precipitates. Moreover, the Ag-containing alloys exhibited ductile fracture after tensile testing. The results of an antibacterial test revealed that the Ag phase precipitates play a key role in the antibacterial mechanism of Ag-containing alloys: Ag+ ions released from the Ag phase precipitates can kill bacteria. It is suggested that as AISI 316L alloy has an Ag content ≥0.2 wt%, it will have excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an antibacterial rate of nearly 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号