首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid composition of two forms of alpha-glucosidase from the yeast Saccharomyces cerevisiae-II was established and the values of Km, V, kcat and kcat/Km for maltose, maltotriose and p-nitrophenyl-alpha-D-glucopyranoside (PNPG) were determined. PNPG possessed a much higher affinity for the enzyme as compared to sucrose, maltose and maltotriose. The value of V decreased in the following order: PNPG greater than sucrose greater than maltose greater than greater than maltotriose. No differences between the kinetic parameters of individual forms of alpha-glucosidase were observed. Glucose, fructose and methyl-alpha-glucoside act as competitive inhibitors. The two forms of alpha-glucosidase under study have an identical pH optimum and thermal stability.  相似文献   

2.
alpha-Glucosidases (EC 3.2.1.20) are recognized as important in starch degradation during cereal seed germination. A barley (Hordeum vulgare) alpha-glucosidase expressed in Pichia pastoris was cultured in flasks; however, the yield was low necessitating the use of multiple batches. Problems arose because of significant variation between batches. We solved these problems by switching to a fermentation system producing a sufficient quantity of a uniform sample. Here we present the expression and purification of a recombinant alpha-glucosidase grown under fermentation conditions. We also present the results of experiments to characterize the thermostability, pH optimum, and substrate specificity of the recombinant enzyme. The optimal pH for the hydrolysis of maltose by recombinant alpha-glucosidase is between 3.5 and 4.5. The thermostability of recombinant alpha-glucosidase was determined at pH 4, where activity is optimal, and at pH 5 and 6, which better mimic the conditions used to convert barley starch to fermentable sugars during industrial processing. The results indicate the enzyme is most thermolabile at pH 4. However, the enzyme is protected from heat inactivation at pH 4 by high concentrations of sucrose. The purified enzyme hydrolyzed maltose three times more rapidly than nigerose and 20 times more rapidly than trehalose and isomaltose. Concentrations of maltose greater than 20 mM inhibited maltose hydrolysis. This is the first report of substrate inhibition for any alpha-glucosidase. The results indicate that the only significant difference between the recombinant enzyme and the previously characterized barley isoforms was the V(max) for maltose hydrolysis.  相似文献   

3.
A large amount of lysosomal acid hydrolases was released into the medium by Tetrahymena pyriformis strain W during growth. An extracellular lysosomal acid alpha-glucosidase has been purified 500-fold with a 41% yield to homogeneity, as judged by polyacrylamide gel electrophoresis. It was found to be a glycoprotein and to consist of a single 110,000-dalton polypeptide chain. The carbohydrate content of the alpha-glucosidase was equivalent to 2.8% of the total protein content, and the oligosaccharide moiety was composed of mannose and N-acetylglucosamine in a molar ratio of 6.7:2. The optimal pHs for hydrolysis of maltose and p-nitrophenyl-alpha-glucopyranoside, maltose, isomaltose, and glycogen were 1.1 mM, 2.5 mM, 33.0 mM, and 18.5 mg/ml, respectively. This purified enzyme appears to have alpha-1,6-glucosidase as well as alpha-1,4-glucosidase activity. Turanose has a noncompetitive inhibitory effect on the hydrolysis of maltose. The antibody raised against Tetrahymena acid alpha-glucosidase inhibited the hydrolysis of all substrates tested. These properties of Tetrahymena acid alpha-glucosidase were found to be similar to those of the human liver lysosomal alpha-glucosidase.  相似文献   

4.
1. Albumin activates human liver acid alpha-glucosidase (alpha-D-glucoside hydrolase, EC 3.2.1.20). From the Arrhenius plot, pH-dependence and Lineweaver-Burk plots it can be concluded that this activation is not only due to stabilisation of the enzyme, but also influences the enzymatic activity. It is proposed that for optimal functioning human liver acid alpha-glucosidase needs a protein environment. 2. Glycogen has a competitive inhibitory effect on the hydrolysis of 4-methylumbelliferyl-alpha-D-glucopyranoside, in contrast to maltose which exhibits a non-competitive type of inhibition. It is concluded that two catalytic sites exist, one for glycogen and one for maltose, while both sites influence each other. With glycogen as substrate a break in the Arrhenius plot is found. This is not the case when maltose is used as substrate. 3. The effect of antibody raised against human liver acid alpha-glucosidase on the activity of human liver acid alpha-glucosidase is studied. No corss-reacting material could be demonstrated in the liver of a patient with glycogen storage disease Type II (M. Pompe, acid alpha-glucosidase deficiency).  相似文献   

5.
Neutral alpha-glucosidase was partially purified from granular fractions isolated from guinea pig polymorphonuclear leukocytes (PMNL). The native enzyme had a high molecular weight, about 417,000, with a subunit of 43,000. The purified enzyme hydrolysed 4-methylumbelliferyl alpha-glucoside and maltose, but not isomaltose, trehalose, and glycogen. The enzyme was strongly inhibited by bromoconduritol and castanospermine, but only slightly by turanose. Monoclonal antibodies which can bind specifically to the enzyme were prepared by immunizing mice with the partially purified enzyme. Hybridomas producing the monoclonal antibodies were selected by an enzyme-linked immunosorbent assay. The seven monoclonal antibodies were found to react with the enzyme from PMNL, but not with the glycoprotein-processing alpha-glucosidase isolated from liver microsomes nor with the macrophage enzyme. The results indicated that PMNL contain a particulate neutral alpha-glucosidase enzymologically and immunologically distinct from other alpha-glucosidases.  相似文献   

6.
The enzymatic glucosylations of naringin, performed using alpha-D-glucosidase, identified in the Mediterranean mollusc Aplysia fasciata is reported. The enzyme actively operates on maltose and has an interesting transglycosylation potential using this donor. We also investigated the use of this marine alpha-glucosidase for a food-compatible glucosylation of naringin to produce new enzymatically modified carbohydrate possessing naringin derivatives. The regioselective formations of the beta-gluco-C6 alpha-glucosyl derivative and of the corresponding isomaltosyl diglucoside of naringin were obtained in high yield and efficiency of reaction. Suspensions of naringin can be used up to approximately 90 mg/mL initial acceptor concentration. In different experiments it was demonstrated that the enzyme was still active after 48 h in presence of this high amount of acceptor and that one of the diasteromers of the naringin is preferred by the enzyme from A. fasciata during glucosylation/deglucosylation enzymatic steps. Finally, the feasibility of efficient naringin glucosylation in grapefruit juice was also demonstrated at optimal pH of the enzyme and low maltose concentrations.  相似文献   

7.
Trehalose supports the growth of Thermus thermophilus strain HB27, but the absence of obvious genes for the hydrolysis of this disaccharide in the genome led us to search for enzymes for such a purpose. We expressed a putative alpha-glucosidase gene (TTC0107), characterized the recombinant enzyme, and found that the preferred substrate was alpha,alpha-1,1-trehalose, a new feature among alpha-glucosidases. The enzyme could also hydrolyze the disaccharides kojibiose and sucrose (alpha-1,2 linkage), nigerose and turanose (alpha-1,3), leucrose (alpha-1,5), isomaltose and palatinose (alpha-1,6), and maltose (alpha-1,4) to a lesser extent. Trehalose was not, however, a substrate for the highly homologous alpha-glucosidase from T. thermophilus strain GK24. The reciprocal replacement of a peptide containing eight amino acids in the alpha-glucosidases from strains HB27 (LGEHNLPP) and GK24 (EPTAYHTL) reduced the ability of the former to hydrolyze trehalose and provided trehalose-hydrolytic activity to the latter, showing that LGEHNLPP is necessary for trehalose recognition. Furthermore, disruption of the alpha-glucosidase gene significantly affected the growth of T. thermophilus HB27 in minimal medium supplemented with trehalose, isomaltose, sucrose, or palatinose, to a lesser extent with maltose, but not with cellobiose (not a substrate for the alpha-glucosidase), indicating that the alpha-glucosidase is important for the assimilation of those four disaccharides but that it is also implicated in maltose catabolism.  相似文献   

8.
1. The maltase and glucoamylase activities of acid alpha-glucosidase purified from rabbit muscle exhibited marked differences in certain physicochemical properties. These included pH stability, inactivation by thiol-group reagents, inhibition by alphaalpha-trehalose, methyl alpha-d-glucoside, sucrose, turanose, polyols, glucono-delta-lactone and monosaccharides, pH optimum and the kinetics and pH-dependence of cation activation. 2. The results are interpreted in terms of the existence of at least two specific substrate-binding sites or sub-sites. One site is specific for the binding of maltose and probably other oligosaccharides. The second site binds polysaccharides such as glycogen. 3. The sites appear to be in close proximity, since glycogen and maltose are mutually inhibitory substrates and interact directly in transglucosylation reactions. 4. Acid alpha-glucosidase exhibited intrinsic transglucosylase activity. The enzyme catalysed glucosyl-transfer reactions from [(14)C]maltose (donor substrate) to polysaccharides (glycogen and pullulan) and to maltose itself (disproportionation). The pH optimum was 5.1, with a shoulder or secondary activity peak at pH5.4. The glucose transferred to glycogen was attached by alpha-1,4- and alpha-1,6-linkages. Three major oligosaccharide products of enzyme action on maltose (disproportionation) were detected. 5. The kinetics of enzyme action on [(14)C]maltose showed that the rate of transglucosylation increased in a sigmoidal fashion as a function of substrate concentration, approximately in parallel with a decrease in the rate of glucose release. 6. The results are interpreted to imply competitive interaction at a specific binding site between maltose and water as glucosyl acceptors. 7. The results are discussed in terms of the possible existence of multiple subgroups of glycogen-storage disease type II.  相似文献   

9.
The microbial production of alpha-amylase from Bacillus amyloliquefaciens was investigated. The microorganism was grown using media containing glucose or maltose at 37 degrees C and under aerobic conditions in a 16-L fermentor. The alpha-amylase synthesis from maltose was not found to be inducible but was found to be subject to catabolite repression. The maltose uptake rate was observed to be the rate-limiting step compared to the conversion rate of maltose to glucose by intracellular alpha-glucosidase. The alpha-amylase activity achieved with maltose as a substrate was higher than that achieved with glucose. A slower growth rate and a higher cell density were obtained with maltose. The enzyme production pattern depended upon the nutrient composition of the medium.  相似文献   

10.
Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h.  相似文献   

11.
Honeybee alpha-glucosidase I was inactivated with diethylpyrocarbonate (DEPC). The inactivation followed pseudo-first-order kinetics. The rate of the loss of activity was decreased by the addition of a substrate, maltose. Since there was no spectral change in the tyrosine absorption region, it was recognized that DEPC did not react with this residue. The alpha-glucosidase had one free sulfhydryl group, which was not involved in the catalytic reaction, and was not modified by DEPC. On the other hand, the specific reaction of DEPC with a histidyl residue was spectrophotometrically confirmed by an increase in absorption near 240 nm, and the activity of the inactivated enzyme was restored by hydroxylamine. The modification rate of one histidyl residue by DEPC was almost equal to the rate of the activity loss. These results indicate that there is one histidyl residue at or near the catalytic site, and that honeybee alpha-glucosidase I has a single active site.  相似文献   

12.
Aspergillus nidulans possessed an alpha-glucosidase with strong transglycosylation activity. The enzyme, designated alpha-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to alpha-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other alpha-glucosidases. We propose here that AgdB is a novel alpha-glucosidase with unusually strong transglycosylation activity.  相似文献   

13.
Genetic heterogeneity in acid alpha-glucosidase deficiency.   总被引:4,自引:0,他引:4       下载免费PDF全文
Several clinical forms of acid alpha-glucosidase deficiency have been described. Our study was planned to identify differences at the molecular level in acid alpha-glucosidase deficiency. Of nine fibroblast strains derived from patients with the infantile form of the disease, eight were crossreacting material (CRM)-negative and one CRM-positive. This was demonstrated by both agar immunodiffusion and immunotitration. No difference in apparent enzymatic activity was observed between CRM-negative and CRM-positive infantile acid alpha-glucosidase deficiency fibroblasts. In two fibroblast strains with the adult form of acid alpha-glucosidase deficiency, rocket immunoelectrophoresis demonstrated a reduction in the amount of enzyme protein, which was directly proportional to the reduction in enzyme activity. In another fibroblast strain obtained from a patient with the adult form of the disease, the activity was within the range of the infantile form and no CRM could be identified. Fibroblasts with phenotype 2 of acid alpha-glucosidase, considered a normal variant, showed a reduction both in the amount of enzyme protein and in the ability of the enzyme to cleave glycogen. However, the catalytic activity for maltose was normal. The findings demonstrate extensive genetic heterogeneity in acid alpha-glucosidase deficiency. Molecular differences were identified both between the clinical forms of the disease and within the infantile and the adult forms of acid alpha-glucosidase deficiency. It remains unknown whether or not the enzyme deficiency in homozygotes for isozyme 2 of acid alpha-glucosidase will be sufficient to cause glycogen accumulation and lead to the development of muscular dystrophy-like disease later in life.  相似文献   

14.
Anomerities of products were estimated for glucosidases from cattle liver and Aspergillus awamori. It was demonstrated that the enzyme from cattle liver is alpha-glucosidase and that from Asp. awamori is exogluconase. It was demonstrated that alpha-glucosidase hydrolyzes the C1--O bond in the course of reaction. delta-Lactone of gluconic acid is a competitive inhibitor for both enzymes. The secondary kinetic isotope effects for both enzymes were measured. The isotope effect for alpha-glucosidase is equal to 1, for exogluconase 1,1 for glycogen and 1,18 for maltose. Some aspects of mechanisms of both enzymes are discussed in terms of the data obtained.  相似文献   

15.
Maltose metabolism of Pseudomonas fluorescens.   总被引:3,自引:1,他引:2       下载免费PDF全文
Pseudomonas fluorescens W uses maltose exclusively by hydrolyzing it to glucose via an inducible alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20). No evidence for phosphorolytic cleavage or oxidation to maltobionic acid was found in this organism. The alpha-glucosidase was totally intracellular and was most active at pH of 7.0. Induction occurred when cells were incubated with maltotriose or maltose. Induction was rapid and easily detectable within the first 5 min after the addition of the inducer. Glucose and its derivatives did not repress induction. Cells growing on DL-alanine or succinate plus maltose exhibited lower levels of alpha-glucosidase than those grown on maltose alone or maltose plus glucose. Induction required both messenger ribonucleic acid and protein synthesis.  相似文献   

16.
17.
We recently purified an alpha-glucosidase comprising 61-kDa and 31-kDa subunits from the fungus Mortierella alliacea and characterized its soluble starch-hydrolyzing activity. Here, the cDNA coding for this enzyme was cloned, revealing that it encodes a single polypeptide of 1,053 amino acids, with a calculated molecular mass of 117 kDa. Comparison between the deduced amino acid sequence and the partial sequences of the purified enzyme suggested that an immature protein can be converted into the two subunits of mature enzyme by post-translational processing at least three cleavage sites. Heterologous expression of recombinant alpha-glucosidase in yeast gave rise to a significant increase in hydrolytic activity toward maltose and soluble starch, in both intracellular and extracellular fractions. Immunoblot analysis using antiserum against the alpha-glucosidase revealed that the active enzyme expressed in yeast is also composed of two subunits. The yeast expression system provides a model suitable for investigating the polypeptide-processing event and structure-function relationship of the alpha-glucosidase with unique substrate specificity.  相似文献   

18.
An acid alpha-glucosidase (EC 3.2.1.20) was purified to homogeneity from the culture medium of Tetrahymena thermophila CU 399. Its general molecular, catalytic and immunological properties were compared to those of the T. pyriformis W enzyme. The enzyme from T. thermophila was a 105-kD monomer and the N-terminus (25 amino acid residues) displayed some homology with that of T. pyriformis enzyme. The purified enzyme was most active at 56 degrees C and showed resistance to thermal inactivation. The acid alpha-glucosidase appears to have alpha-1,6-glucosidase as well as alpha-1,4-glucosidase activity. The Km values determined with p-nitrophenyl-alpha-glucopyranoside, maltose, isomaltose and glycogen were 0.7 mM, 2.5 mM, 28.5 mM and 18.5 mg/ml, respectively. The enzyme was antigenically distinct from T. pyriformis acid alpha-glucosidase.  相似文献   

19.
We have previously found that some mammalian tissue homogenates can catalyze a unique transglucosylation from maltose to L-ascorbic acid (AA), resulting in a chemically stable AA derivative, L-ascorbic acid alpha-glucoside (AAG). In the present study, the enzyme responsible for this transglucosylation was isolated from rat intestinal membrane. The formation of AAG was determined by HPLC with an ODS column. The specific activity of AAG-forming enzyme was increased in parallel with that of alpha-glucosidase (maltose hydrolase) during the purification, and two neutral alpha-glucosidases, termed alpha-glucosidases I and II, were purified to apparent homogeneity. Their enzymological properties showed that they corresponded to maltase [EC 3.2.1.20] and sucrase-isomaltase complex [EC 3.2.1.48/10], respectively. Both enzymes could form AAG by splitting only maltose among the disaccharides examined, although alpha-glucosidase I possessed a considerably higher activity than the other enzyme. Both AAG formation and maltose hydrolysis were dependent on incubation temperature with the maximal activity at 60 degrees C, but there was an apparent difference between their pH optima. AAG thus formed could also be hydrolyzed by the purified enzymes. From these results, it is concluded that membrane-bound neutral alpha-glucosidases from rat intestine have site-specific transglucosylase activity to form nonreducing AAG which is distinct from L-ascorbic acid-6-O-alpha-D-glucoside.  相似文献   

20.
A soluble maltase (alpha-glucosidase) with an apparent subunit mass of 80 kDa was purified to homogeneity from Sulfolobus solfataricus. The enzyme liberates glucose from maltose and malto-oligomers. Maximal activity was observed at 105 degrees C, with half-lives of 11 h (85 degrees C), 3.0 h (95 degrees C), and 2.75 h (100 degrees C). The enzyme was generally resistant to proteolysis and denaturants including aliphatic alcohols. n-Propanol treatment at 85 degrees C increased both Km and Vmax for maltose hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号