首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress is a physiological condition in which reactive oxygen species created through cellular respiration can potentially damage DNA and tissue. Oxidative stress may partially mediate trade-offs between reproductive effort and survival efforts. On the one hand, traits associated with reproductive effort, particularly costly male-male competition, are expected to raise oxidative stress. On the other hand, behavioral strategies may be a critical mediating mechanism, such that those who can better resist the physiological costs of oxidative damage exhibit increased mating effort. In a sample of 248 college students (173 men), we examined the associations between traits linked to mating effort—including personality features, athleticism, and history of illness—with levels of 8-OHdG, a biomarker of oxidative stress. 8-OHdG was measured twice, one week apart, once during active hours and once at awakening. In men, surgency, social dominance, and athleticism were all negatively associated with 8-OHdG levels in awakening, but not lab samples collected during active hours. In women, these same traits were positively associated with 8-OHdG levels, particularly in morning samples. Differences in associations based on sex and time of collection introduce additional complexities to understanding links between oxidative stress and mating effort.  相似文献   

2.
We have investigated how the upstream sequence element (USE) of the lamin B2 poly(A) signal mediates efficient 3'-end formation. In vitro analysis demonstrates that this USE increases both the efficiency of 3'-end cleavage and the processivity of poly(A) addition. Cross-linking using selectively labeled synthetic RNAs confirms that cleavage stimulation factor interacts with the sequences downstream of the cleavage site, while electrophoresis mobility shift assays demonstrate that the USE directly stabilizes the binding of the cleavage and polyadenylation specificity factor to the poly(A) signal. Thus in common with other poly(A) signals, the lamin B2 USE directly enhances the binding of basal poly(A) factors. In addition, a novel 55-kDa protein binds to the USE and the core poly(A) signal and appears to inhibit cleavage. The binding activity of this factor appears to change during the cell cycle, being greatest in S phase, when the lamin B2 gene is transcribed.  相似文献   

3.
The studies were carried out in order to estimate differences in the physiological state between triticale and maize plants subjected to drought stress followed by rehydration. The physiological state of the plants was evaluated by measurements of leaf water potential, net photosynthesis, transpiration and stomatal conductance. Spectrofluorimetric methods for the study of blue, green and red fluorescence were applied. We observed that the soil drought induced a greater water loss in triticale leaves than in maize and consequently caused greater injuries to the photosynthetic apparatus. Moreover, triticale plant recovery was slower than in maize plants during the rehydration phase. The effect was probably connected with the higher functional and structural disorganisation of the photosynthetic apparatus observed during drought stress in triticale. Water stress is responsible for damages to photosystem PS II. The worst light utilisation in photosynthetic light conversion was recorded as an increase in the intensity of red fluorescence. Drought stress induced a strong increase in the intensity of blue and green fluorescence in the studied species and it was still high in maize plants during the first day of rehydration. Increase in the intensity of blue and green fluorescence in maize seems to be the effect of the photoprotection mechanism which prevents damage to PS II through utilisation of excess energy.  相似文献   

4.

Background

Reactive oxygen species are implicated in the physiopathogenesis of salt-induced hypertension and the C242T polymorphism of the p22-phox gene has been associated with higher superoxide production. This study investigated the impact of this polymorphism on the relationship between urinary sodium excretion (USE) and blood pressure levels in an urban Brazilian population.

Methods

We cross-sectionally evaluated 1,298 subjects from the city of Vitoria-ES, located in the Southeast region of Brazil, by clinical history, physical examination, anthropometry, analysis of laboratory parameters, USE measurement and p22-phox C242T polymorphism genotyping.

Results

No significant differences in studied parameters were detected between the studied genotype groups (CC vs. CT+TT). Systolic blood pressure exhibited significant correlation with USE only in T allele carriers (r = 0.166; p<0.001), while diastolic blood pressure and hypertension status correlated with USE in both genotypes albeit more weakly in subjects with CC genotype (r = 0.098; p = 0.021 and r = 0.105; p = 0.013, respectively) than in T carriers (r = 0.236; p<0.001 and r = 0.213; p<0.001, respectively). Regression analyses adjusted for confounding factors showed that USE remained independently associated with systolic (p<0.001) and diastolic blood pressure (p<0.001) and hypertension status (p = 0.004) only in T allele carriers. Finally, higher diastolic and systolic blood pressure levels were detected in T allele carriers than in CC genotype individuals in the highest tertile of USE.

Conclusions

The p22-phox 242T allele is associated with higher blood pressure levels among subjects with higher USE in an urban Brazilian population.  相似文献   

5.
Mdg1/ERdj4, a mammalian chaperone that belongs to the HSP40 protein family, has been reported to be located in the endoplasmic reticulum (ER), is induced by ER stress, and protects ER stressed cells from apoptosis. Here we show that under normal physiological conditions, Mdg1/ERdj4 is expressed at various levels in the vasculature due to different activation states of the endothelium. To elucidate the stimuli that induce ER stress and thus upregulate Mdg1/ERdj4, we investigated the effect of several endothelium specific stressors on its expression. Mdg1/ERdj4 mRNA is induced by activated macrophages, by nitric oxide (NO) and heat shock, and during terminal cell differentiation, whereas shear stress does not affect Mdg1/ERdj4 expression levels. While the mRNA stability of BiP/GRP78 is unaffected in ER stressed cells, the stability of Mdg1/ERdj4 mRNA is prolonged during ER stress resulting in rapid increases and high levels of Mdg1/ERdj4 mRNA. Mdg1/ERdj4 protein is localized in the ER under control conditions. While heat shock induces a rapid translocation of Mdg1/ERdj4 to the nucleoli, no translocation could be observed during ER stress. This indicates that Mdg1/ERdj4 protein has diverse mechanisms to protect stressed cells from apoptosis.  相似文献   

6.
The functional state of the body was assessed in healthy subjects performing their daily work under stress conditions. The study sample comprised bus drivers aged 25–65 years. A prenosological approach was used to assess the borderline between the physiologically normal state and pathological conditions. At the first stage of the study (prenosological screening), the subjects were divided into four groups with different adaptive capacities of the body. At the second stage of the study, a detailed prenosological examination was performed to determine the causes and mechanisms of evolution of prenosological conditions into premorbid conditions and further into adaptation failure, resulting in diseases. It was found that the bus drivers experienced chronic occupational stress leading to the overtension and exhaustion of regulatory mechanisms and to the rapid development of cardiovascular pathology. Long-term mental and psychoemotional tension in drivers associated with occupational stress leads to the activation of suprasegmental structures involved in the control of physiological functions; to a decrease in the functional reserves; and, consequently, to the worsening of the psychophysiological and cardiorespiratory function of the body. As a result of the study, a group of bus drivers with an increased risk of diseases, including cardiovascular, was determined and recommendations on workforce health protection were developed for the managers of the motor transport enterprise.  相似文献   

7.
The characteristics of the physical state were studied in 13- to 14-year-old adolescents with high (n = 97) and low (n = 85) stress reactivities. The data showed that, during the period of sexual maturation, the development of the mechanisms of energy for muscular activity was heterochronic and nonlinear. Hyperreactive boys exhibited relatively high anaerobic nonlactic and low aerobic capacities of the body and enhanced physiological costs of the high-power function. In hyperreactive adolescents, the motor function was specifically characterized by a combination of a high level of movement speed and power and a relatively low level of general endurance. In 13- to 14-year-old adolescents, the differences in muscular working capacities and motor abilities, associated with various stress reactivity, appear during different sexual maturation stages (SMSs). At SMSs II and III, hyper- and hyporeactive adolescents exhibit higher indices of aerobic body capacities and relatively low anaerobic capacities as compared to the children at SMS IV. It is supposed that, in the hyperreactive adolescents, the efficiency of the mechanisms of body protection from hypoxia is lower.  相似文献   

8.
Seedlings of winter wheat ( Triticum aestivum L. cv. Jubilejnaja 50) were grown under normal and dry conditions. Frost resistance (LT50) of 10-day-old control seedlings was −6°C. LT50 of the subsequently drought-stressed leaves shifted to −16°C. In plants of the same physiological age (28 days) but grown without stress, LT50 was −12°C. Phosphatidylcholine accumulated and phosphatidylethanolamine decreased in drought-stressed leaves. Fatty acid unsaturation of these phospholipids increased with leaf age, independently of water supply. Both ageing and drought stress produced a decrease in the apparent phase separation temperature of isolated total phospholipids as determined by electron spin resonance. The possible role of dehydration-induced structural changes in the bilayer matrix in triggering adaptive alterations in membrane composition, similar to those observed during cold hardening, is discussed.  相似文献   

9.
The importance of genetic variation in evolution is well established. Yet, the mechanisms by which genetic variation—particularly variation in traits under selection—is maintained in natural populations has long been an evolutionary puzzle. Understanding individual variables driving selection and their functional mechanisms is increasingly important in the context of global change and its potential consequences for biodiversity. Here we examined intra-population performance among allelic variants of a pleiotropic locus in response to thermal stress in the variable platyfish, Xiphophorus variatus. The wild-type tailspot allele exhibited significantly lower heat tolerance than all three pattern alleles found in the population, conforming to predictions based on previously observed correlations between temperature and pattern frequencies in the wild. Furthermore, differences between tailspot pattern frequencies in adults and juveniles were broadly consistent with this trend. Thus, it appears that physiological stress and reduced performance of the wild-type allele at higher relative temperatures is a mechanism balancing its frequency in natural populations. Temperature variation and not dissolved oxygen alone, as previously reported, is likely a important abiotic variable contributing to the maintenance of adaptive polymorphism. Furthermore, our findings underscore the potential implications of rising temperatures and physiological stress for levels of genetic variation in natural populations.  相似文献   

10.
Drought Stress in Wheat during Flowering and Grain-filling Periods   总被引:4,自引:0,他引:4  
Drought is a major environmental stress threatening wheat productivity worldwide. Global climate models predict changed precipitation patterns with frequent episodes of drought. Although drought impedes wheat performance at all growth stages, it is more critical during the flowering and grain-filling phases (terminal drought) and results in substantial yield losses. The severity and duration of the stress determine the extent of the yield loss. The principal reasons for these losses are reduced rates of net photosynthesis owing to metabolic limitations—oxidative damage to chloroplasts and stomatal closure—and poor grain set and development. A comprehensive understanding of the impact of terminal drought is critical for improving drought resistance in wheat, with marker-assisted selection being increasingly employed in breeding for this resistance. The limited success of molecular breeding and physiological strategies suggests a more holistic approach, including interaction of drought with other stresses and plant morphology. Furthermore, integration of physiological traits, genetic and genomic tools, and transgenic approaches may also help to improve resistance against drought in wheat. In this review, we describe the influence of terminal drought on leaf senescence, carbon fixation, grain set and development, and explain drought resistance mechanisms. In addition, recent developments in integrated approaches such as breeding, genetics, genomics, and agronomic strategies for improving resistance against terminal drought in wheat are discussed.  相似文献   

11.
One of the common explanations for oxidative stress in the physiological milieu is based on the Fenton reaction, i.e. the assumption that radical chain reactions are initiated by metal-catalyzed electron transfer to hydrogen peroxide yielding hydroxyl radicals. On the other hand — especially in the context of so-called “iron switches” — it is postulated that cellular signaling pathways originate from the interaction of reduced iron with hydrogen peroxide.

Using fluorescence detection and EPR for identification of radical intermediates, we determined the rate of iron complexation by physiological buffer together with the reaction rate of concomitant hydroxylations of aromatic compounds under aerobic and anaerobic conditions. With the obtained overall reaction rate of 1,700 M-1s-1 for the buffer-dependent reactions and the known rates for Fenton reactions, we derive estimates for the relative reaction probabilities of both processes.

As a consequence we suggest that under in vivo conditions initiation of chain reactions by hydroxyl radicals generated by the Fenton reaction is of minor importance and hence metal-dependent oxidative stress must be rather independent of the so-called “peroxide tone”. Furthermore, it is proposed that — in the low (subtoxic) concentration range — hydroxylated compounds derived from reactions of “non-free” (crypto) OH radicals are better candidates for iron-dependent sensing of redox-states and for explaining the origin of cellular signals than the generation of “free” hydroxyl radicals.  相似文献   

12.
Reconstitution experiments have suggested that N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins constitute a minimal membrane fusion machinery but have yielded contradictory results, and it is unclear whether the mechanism of membrane merger is related to the stalk mechanism that underlies physiological membrane fusion. Here we show that reconstitution of solubilized neuronal SNAREs into preformed 100 nm liposomes (direct method) yields proteoliposomes with more homogeneous sizes and protein densities than the standard reconstitution method involving detergent cosolubilization of proteins and lipids. Standard reconstitutions yield slow but efficient lipid mixing at high protein densities and variable amounts of lipid mixing at moderate protein densities. However, the larger, more homogenous proteoliposomes prepared by the direct method yield almost no lipid mixing at moderate protein densities. These results suggest that the lipid mixing observed for standard reconstitutions is dominated by the physical state of the membrane, perhaps due to populations of small vesicles (or micelles) with high protein densities and curvature stress created upon reconstitution. Accordingly, changing membrane spontaneous curvature by adding lysophospholipids inhibits the lipid mixing observed for standard reconstitutions. Our data indicate that the lipid mixing caused by high SNARE densities and/or curvature stress occurs by a stalk mechanism resembling the mechanism of fusion between biological membranes, but the neuronal SNAREs are largely unable to induce lipid mixing at physiological protein densities and limited curvature stress.  相似文献   

13.
Since the 1970s, research about zoo visitors' effects on the welfare of nonhuman animals in captivity has intensified. Numerous studies have shown that characteristics such as visitor presence, density, activity, size, and position are associated with animal behavioral and—to alesser extent physiological—changes. Studies usually interpret these changes as negative (undesirable) or positive (enriching), but it remains unclear whether they significantly impinge on animal welfare. To make confident conclusions about visitors' effects necessitates more studies using (a) a wider range of animal groupings, (b) measures of stress, (c) visitor-animal variables, and (d) other methodological improvements In the meantime, in addition to further research, individual zoos need to emphasize (a) monitoring the stress indicators of their captive animals, (b) observing visitor behavior, and (c) ensuring that staffs are aware of the “visitor effect” concept.  相似文献   

14.
Secondary structure remains the most exploitable feature for noncoding RNA (ncRNA) gene finding in genomes. However, methods based on secondary structure prediction may generate superfluous amount of candidates for validation and have yet to deliver the desired performance that can complement experimental efforts in ncRNA gene finding. This paper investigates a novel method, unpaired structural entropy (USE) as a measurement for the structure fold stability of ncRNAs. USE proves to be effective in identifying from the genome background a class of ncRNAs, such as precursor microRNAs (pre-miRNAs) that contains a long stem hairpin loop. USE correlates well and performs better than other measures on pre-miRNAs, including the previously formulated structural entropy. As an SVM classifier, USE outperforms existing pre-miRNA classifiers. A long stem hairpin loop is common for a number of other functional RNAs including introns splicing hairpins loops and intrinsic termination hairpin loops. We believe USE can be further applied in developing ab initio prediction programs for a larger class of ncRNAs.  相似文献   

15.
Regulation mechanisms of the brain functional state (FS) were studied in man during acute hypoxic conditions (inhalation of 8% O2 hypoxic air for 15-25 minutes). Changes in balance of the brain regulatory structures activities caused by hypoxia determine FS dynamics that is reflected in the reorganization of the EEG spatial interrelations (by data of factor and cluster analysis of EEG cross-correlation matrices), as well as translocation of intracerebral position of electrical equivalent dipole sources (EEDS) coupled with EEDS density rising in medial and basal regions of the cerebral hemisphere temporal lobes (by EEDS-tomography data). Alterations of the cortical-sub-cortical interactions show a decline in the brain activating system tone, a decrease in the neocortical inhibitory control of subcortical processes, and activation of structures of limbic and hypothalamic regions. Switching of integrative regulatory control mechanism from "cortical-thalamic" system level to "limbic-dyencephalic" one could ensure both removal of powerful unspecific components of hypoxic stress and a greater stability of essential physiological parameters of the main vital functions regulation during oxygen deficiency accumulation.  相似文献   

16.
Extreme drought events challenge ecosystem functioning. Ecological response to drought is studied worldwide in a growing number of field experiments by rain-out shelters. Yet, few meta-analyses face severe challenges in the comparability of studies. This is partly because build-up of drought stress in rain-out shelters is modified by ambient weather conditions. Rain-out shelters can further create confounding effects (radiation, temperature), which may influence plant responses. Yet, a quantification of ecophysiological effects within rain-out shelters under opposing ambient weather conditions and of microclimatological artifacts is missing. Here, we examined phytometers—standardized potted individuals of Plantago lanceolata—under rain-out shelter, rain-out shelter artifact control, and ambient control during opposing outside microclimatological conditions. Furthermore, we tested for artifacts of rain-out shelters on plant responses in a long-term semi-natural grassland experiment. Phytometer plants below the rain-out shelters showed lower stomatal conductance, maximum quantum efficiency, and leaf water potential during warm ambient conditions with high evaporative demand than during cold conditions with low evaporative demand. Plant performance was highly correlated with ambient temperature and vapor pressure deficit (VPD). Rain-out shelter artifacts on plant responses were nonsignificant. Rain-out shelters remain a viable tool for studying ecosystem responses to drought. However, drought manipulations using rain-out shelters are strongly modified by ambient weather conditions. Attributing the results from rain-out shelter studies to drought effects and comparability among studies and study years therefore requires the quantification of the realized drought stress, for example, by relating ecosystem responses to measured microclimatological parameters such as air temperature and VPD.  相似文献   

17.
Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed‐batch mode under non‐stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup—rapid media transition—enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab‐scale stirred‐tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed‐batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short‐term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
19.
Cryosections (freeze-sections) of tetrads/polyads and their subsequent examination in the SEM complement traditional methods (LM, SEM, and TEM) by providing both a dynamic three-dimensional overview of polyad morphology and clarifying aperture morphology, internal wall characters and tetrad/polyad cohesion mechanisms. Cryosections of Dinizia tetrads reveal that cohesion is maintained through adhesion/fusion of the apices of clavate elements in localized regions of the subproximal and proximal walls — a feature not discernible using traditional SEM preparations. Cryosections of the globose 20-grained polyads of Parkia species reveal small central grains and triradiate-shaped proximal apertures — features unobservable or misinterpreted using traditional LM, SEM and TEM methods. In Anadenathera polyads, cryosections have clarified the nature and distribution of small gaps present in the lateral and proximal walls of individual grains.  相似文献   

20.
The microsome membrane of wheat ( Triticum aestivum L. ) leaves under different time of drought stress was purified to determine the active oxygen free radicals generated and their severity of injury to the membrane. During the drought stress the rate of O2- and H2O2 generation increased for a certain time and then decreased. The concentration of MDA increased continuously. The activity of SOD decreased gradually. The concentration of —SH group and MDA increased from the beginning until the 36th hour under drought stress, thereafter MDA content continued to increase while the —SH content decreased. Several physiological indexes related to membrane injury, such as root electroconductivity, leaf water potential and water content were all affected accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号