首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pyrenoid is a prominent proteinaceous structure found in the stroma of the chloroplast in unicellular eukaryotic algae, most multicellular algae, and some hornworts. The pyrenoid contains the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase and is sometimes surrounded by a carbohydrate sheath. We have observed in the unicellular green alga Chlamydomonas reinhardtii Dangeard that the pyrenoid starch sheath is formed rapidly in response to a decrease in the CO2 concentration in the environment. This formation of the starch sheath occurs coincidentally with the induction of the CO2-concentrating mechanism. Pyrenoid starch-sheath formation is partly inhibited by the presence of acetate in the growth medium under light and low-CO2 conditions. These growth conditions also partly inhibit the induction of the CO2-concentrating mechanism. When cells are grown with acetate in the dark, the CO2-concentrating mechanism is not induced and the pyrenoid starch sheath is not formed even though there is a large accumulation of starch in the chloroplast stroma. These observations indicate that pyrenoid starch-sheath formation correlates with induction of the CO2-concentrating mechanism under low-CO2 conditions. We suggest that this ultrastructural reorganization under lowCO2 conditions plays a role in the CO2-concentrating mechanism C. reinhardtii as well as in other eukaryotic algae.  相似文献   

2.
When the green unicellular alga Chlamydomonas eugametos is grown under light/dark regimes, nuclear genes are periodically activated in response to the changes in light conditions. These genetic responses are dependent upon the activation of genes associated with photosynthesis (LI616 and LI637), nonphotosynthetic photoreceptors (LI410 and LI818) and the biological clock (LI818). We report here that the LI410 and LI637 genes are part of a small gene family encoding hemoglobins (Hbs) related to those from two unicellular eukaryotes, the ciliated protozoa Paramecium caudatum and Tetrahymena pyriformis, and from the cyanobacterium Nostoc commune. Investigations of the intracellular localization of C. eugametos Hbs by means of immunogold electron microscopy indicate that these proteins are predominantly located in the chloroplast, particularly in the pyrenoid and the thylakoid region. To our knowledge, this constitutes the first evidence for the presence of Hbs in chloroplasts. Alignment of the LI637 cDNA nucleotide sequence with its corresponding genomic sequence indicates that the L1637 gene contains three introns, the positions of which are compared with those in the Hb genes of plants, animals and the ciliate P. caudatum. Although the LI637 gene possesses a three-intron/four-exon pattern similar to that of plant leghemoglobin genes, introns are inserted at different positions. Similarly the position of the single intron in the P. caudatum gene differs from the intron sites in the LI637 gene. The latter observations argue against the current view that all eukaryotic Hbs have evolved from a common ancestor having a gene structure identical to that of plant or animal Hbs.  相似文献   

3.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

4.
D. H. Brown  C. Ascaso  S. Rapsch 《Protoplasma》1987,136(2-3):136-144
Summary Observations have been made on ultrastructural changes in pyrenoids of the algal cells in the lichenParmelia sulcata subjected to a range of controlled desiccation and rehydration regimes. Weaker staining of parts of the proteinaceous pyrenoid matrix, interpreted as damage, occurred within 48 hours of transfering moist thalli to 53% r.h. in a 12 hours light 12 hours dark (20°C 14°C) regime. No specific damage resulted from direct dehydration at 0% r.h. or on transfer after 48 hours from 53% r.h. to 0% r.h. Material stored dry under different conditions,e.g., 0%, 53% or 53% to 0% r.h., for 72 hours showed recovery of the pyrenoid matrix when rehydrated in water (30 minutes) or by storage at 100% r.h. for 24 hours. After storage at 53% r.h. or 0% r.h. for 3 months, damage was more extreme, being greater in material originally dried at 53% r.h. Recovery in water, to the original appearance, only occurred after rehydration for 24 hours at 100% r.h. After 3 months desiccation, damage, due to the initial 48 hours at 53% r.h. was still apparent. Severe damage involved expansion of the pyrenoid. As rehydration restored pyrenoids to their original dimensions, pyrenoid proteins probably became dispersed rather than degraded during desiccation.  相似文献   

5.
The CO2-concentrating mechanism (CCM) was induced in the green unicellular alga Chlorella when cells were transferred from high (5% CO2) to low (0.03%) CO2 concentrations. The induction of the CCM correlated with the formation of a starch sheath specifically around the pyrenoid in the chloroplast. With the aim of clarifying whether the starch sheath was involved in the operation of the CCM, we isolated and physiologically characterized a starchless mutant of Chlorella pyrenoidosa, designated as IAA-36. The mutant strain grew as vigorously as the wild type under high and low CO2 concentrations, continuous light and a 12 h light/12 h dark photoperiod. The CO2 requirement for half-maximal rates of photosynthesis [K0.5(CO2)] decreased from 40 μM to 2–3 μM of CO2 when both wild type and mutant were switched from high to low CO2. The high affinity for inorganic carbon indicates that the IAA-36 mutant is able to induce a fully active CCM. Since the mutant does not have the pyrenoid starch sheath, we conclude that the sheath is not involved in the operation of the CCM in Chlorella cells.  相似文献   

6.
7.
Summary Chloroplasts of many species of hornworts (Anthocerotae) have a structure that resembles the pyrenoid of green algae but whether these two structures are homologous has not been determined. We utilized immunogold labelling on thin sections to determine the distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the major protein of algal pyrenoids, in sixteen hornwort species with and without pyrenoids. Several species (Phaeoceros laevis, Anthoceros punctatus, A. formosae, A. laminiferus, Folioceros fuciformis, Folioceros sp.,Dendroceros tubercularis, D. japonicus, D. validus, Notothylas orbicularis, N. temperata, andSpaerosporoceros adscendens) have uniplastidic (or primarily uniplastidic) cells with large prominent multiple pyrenoids. In all of these species, the labelling is found exclusively in the pyrenoid and, with the exception of theFolioceros, Dendroceros, andNotothylas species, the labelling is randomly distributed throughout the pyrenoid. In the exceptional species, the pyrenoids have prominent pyrenoglobuli or other inclusions that are unlabelled. InMegaceros flagellaris andM. longispirus, the cells are multiplastidic (with the exception of the apical cell and some epidermal cells) and the chloroplasts lack pyrenoids.Anthoceros fusiformis andPhaeoceros coriaceus have primarily uniplastidic cells but the chloroplasts lack pyrenoids; only an area of stroma in the center of the plastid devoid of starch, reminiscent of a pyrenoid, is found. In all of the species lacking pyrenoids, RuBisCo is found throughout the stroma, including the stromal spaces made by the so-called channel thylakoids. No preferential accumulation of RuBisCo is found in the pyrenoid-like region inA. fusiformis andP. coriaceus. These data indicate that 1) the hornwort pyrenoid is homologous to algal pyrenoids in the presence of RuBisCo; 2) that at least some of the RuBisCo in the pyrenoid must represent an active form of the enzyme; and 3) that, in the absence of pyrenoids, the RuBisCo is distributed throughout the stroma, as in higher plants.Abbreviations RuBisCo ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

8.
The thylakoid lamellae which traverse the pyrenoid of the unicellular red alga Porphyridium cruentum (Agardh) Nägeli appear to lack phycobilisomes. We have confirmed by immuno-electron microscopy that phycoerythrin (PE), an important structural component of the phycobilisomes of red algae, is absent from the pyrenoid. To characterize pyrenoid thylakoids further, electron-microscopic cytochemical methods were employed to detect photosystem activity. Photosystem (PS) I activity was demonstrated in both stromal and pyrenoid thylakoids by the photooxidation of 3,3-diaminobenzidine. In contrast, the localization of photoreduced distyryl nitroblue tetrazolium demonstrated that PSII activity was restricted to stromal thylakoids. The observed partitioning of PE and PSII activity within the plastid may be related to another observation, that being the localization of nearly all ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) within the pyrenoid of this alga. It is possible that the pyrenoid of P. cruentum functions as a specific metabolic compartment where CO2 fixation is enhanced by the absence of photosynthetic O2 evolution.Abbreviations DAB 3,3-diaminobenzidine-4HCl - DS-NBT distyryl nitroblue tetrazolium chloride - EF exoplasmic face - LSU large subunit of RuBisCO - PE phycoerythrin - PS photosystem - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Drs. Jacqueline Fleck (CNRS, Strasbourg) and Robert MacColl (New York State Department of Health, Albany) for providing us with the antibodies used in this study. We also thank Dr. C.E. Smith for use of the Zeiss MOP-3 digital analyser and Dr. Geneviève Bricheux for kindly providing Lowicryl-embedded samples of P. cruentum. Aatrex® was kindly donated by Ciba-Geigy. This research was supported by the Natural Sciences and Engineering Research Council of Canada (grant No. A-2921).  相似文献   

9.
Using cultured cells of the hornwortAnthoceros punctatus, the change in the relative chloroplast DNA content in each stage of chloroplast division was investigated to clarify the relationship between the division cycle of a chloroplast and a cell nucleus. Samples of cultured cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) and then observed with an epifluorescence microscope and a chromosome image analyzing system (CHIAS). A chloropiast in cultured cells duplicated DNA with an increase in size. When a chloroplast began to divide, it was constricted in the middle, taking a dumbbell shape, and then divided into two daughter chloroplasts. In cultured cells of this species, the pattern of quantitative change of chloroplast DNA, that is, the DNA replication pattern of chloroplasts, corresponded to that of cell nuclear DNA in mitosis.  相似文献   

10.
Glutamine-synthetase (GS; EC 6.3.1.2) activity and protein levels were measured in crude extracts from Monoraphidium braunii Näegeli, strain 202-7d, cultures grown under different nitrogen sources. Only ammonium and l-glutamine promoted a partial enzyme inactivation, which, in the case of l-glutamine, was accompanied by a significant repression of GS. Methionine sulfoximine (MSX), a strong inhibitor of GS, produced a drastic inactivation of GS which was concomitant with a marked increase in GS protein as measured by rocket immunoelectrophoresis. Such an increase was prevented in the presence of cycloheximide. The effect of the l-glutamine analog on GS activity and protein was partially inhibited if l-glutamine was also added to cell cultures, possibly indicating competition in the transport of these two substances. In addition, the effects of MSX were reversed after longer times when cultures were treated with smaller concentrations of inhibitor. Treatment of cell cultures with azaserine, a specific inhibitor of glutamate synthase, the second enzyme acting in the ammonium assimilation pathway, promoted a strong GS inactivation and a partial repression of this enzyme, which paralleled a specific increase in the intracellular pools of glutamine High-performance liquid chromatography measurements of intracellular amino-acid concentrations showed that glutamine levels correlated negatively with GS concentration. A role for glutamine as a negative effector of GS synthesis is proposed.Abbreviations GS l-glutamine synthetase - GOGAT l-glu-tamine:2-oxoglutarate amidotransferase - MSX methionine sulfoximine During the course of this work, J.A. was supported by a fellowship from Junta de Andalucía, and J.M. G-F. by a fellowship from the Spanish Ministerio de Educatión y Ciencia. This work was supported by the Junta de Andalucía.  相似文献   

11.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

12.
Three new coccoid zoospore-producing green algae includingAxilococcus clingmanii gen. & spec. nov.,Lautosphaeria monsfumosa gen. & spec. nov., andDictylochloris pulchra spec. nova (Chlorococcales, Chlorophyceae) are described.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

13.
We have discovered a bacterial contaminant in some cell cultures of Datura innoxia (Mill.). The bacterium was tentatively identified as a species of Hyphomicrobium on the basis of its morphology and life cycle, and was isolated and grown in pure culture on a defined medium. The contaminant was not macroscopically observable in plant cell cultures. It caused neither a reduction of plant cell growth nor a noticeable increase in culture turbidity. Furthermore, it was not readily detectable by many standard assays for culture contamination: it would not grow alone in plant culture medium or yeast extract potato dextrose medium, and grew only very slowly on nutrient agar or beef-peptone medium. Repeated treatments with a combination of streptomycin (100 g/ml) and carbenicillin (100 g/ml) eliminated the contaminant from D. innoxia cell cultures without harming the plant cells.  相似文献   

14.
The cauliflower mosaic virus 35S (35S) and the enhanced 35S (E35S) promoters fused with maize alcohol dehydrogenase (Adh1) intron1 or maize shrunken locus (sh1) intronl along with maize Adh1 and rice actin (Act1) promoters fused to their respective first introns were tested for transient expression of the E.coli -glucuronidase (gus) reporter gene in cultured barley (Hordeum vulgare L) cells. The plasmids, carrying the respective promoterintron combinations to drive the gus fused to nopaline synthase (nos) terminator, were introduced into cultured barley cells using a particle gun. The rice Act1 promoter with its first intron gave the highest expression of all promoter intron combinations studied. This was followed by the E35S promoter and no significant differences were observed between the other two promoters tested. The rice actin promoter is now being used to drive selectable marker genes to obtain stably transformed cereal cells.NRCC No. 36482  相似文献   

15.
16.
Komárek has recently reviewed the various species assigned to the green algal genusNeochloris Starr (Chlorococcales, Chlorococcaceae) and removed those with uninucleate vegetative cells to a new genus,Ettlia. Watanabe & Floyd, unaware ofKomárek's work, also reviewed the species ofNeochloris and distributed them among three genera—Neochloris, Chlorococcopsis gen. nov., andParietochloris gen. nov.—on the basis of details of the covering of the zoospore and the arrangement of the basal bodies of the flagellar apparatus. This paper reconciles these two treatments and makes additional recommendations at the ranks of genus, family, order, and class.  相似文献   

17.
Codium fragile (Suringar) Hariot is an edible green alga farmed in Korea using seed stock produced from regeneration of isolated utricles and medullary filaments. Experiments were conducted to reveal the optimal conditions for nursery culture and out-growing of C. fragile. Sampling and measurement of underwater irradiance were carried out at farms cultivating C. fragile at Wando, on the southwestern coast of Korea, from October 2004 to August 2005. Growth of erect thalli and underwater irradiance were measured over a range of depths for three culture stages. During the nursery cultivation stage (Stage I), growth rate was greatest at 0.5 m depth (0.055 ± 0.032 mm day−1), where the average midday irradiance over 60 days was 924 ± 32 μmol photons m−2 s−1. During the pre-main cultivation stage (Stage II), the greatest growth rate occurred at a depth of 2 m (0.113 ± 0.003 mm day−1) with an average irradiance of 248 ± 116 μmol photons m−2 s−1. For the main cultivation stage (Stage III) of the alga, thalli achieved the greatest increase in biomass at 1 m depth (7.2 ± 1.0 kg fresh wt m−1). These results suggest that optimal growth at each cultivation stages of C. fragile could be controlled by depth of cultivation rope.  相似文献   

18.
Segments of 7-d low light-grown barley laminae cut at 0.5 cm intervals up from the intercalary meristem were examined ultrastructurally and biochemically. The different regions upwards showed the succession of plastid development in light-grown tissues of eoplasts, amyloplasts, amoeboid, immature and mature plastids as described by Whatley (1977). Semi-crystalline bodies were detected in all of them. The eoplast-amyloplast regions are characterised by a greater proportion of mitochondria and high levels of ATP and 3-phosphoglyceric acid, together with low levels of inorganic phosphate conducive to the activation of ADP glucose pyrophosphorylase. The amoeboid and immature plastid regions have higher levels of inhibitory phosphate and starch breakdown may be responsible for the release of metabolites and energy for development. Segments containing amoeboid and immature plastids also have reduced levels of ATP (and 3-phosphoglyceric acid) as photosynthetic components are synthesised. Using ultrastructural assessments of areas of thylakoids, first -carotene and violaxanthin, followed by chlorophyll a and lutein and, lastly, chlorophyll b are concentrated in the developing lamellar systems of the immature and mature chloroplasts. The formation of additional membraneous material which spreads these pigment systems over a greater thylakoid area within the plastids is the final stage of plastid morphogenesis in low light-grown seedlings.Abbreviations Chl chlorophyll - 3-PGA 3 phosphoglyceric acid  相似文献   

19.
Protoplasts have been obtained from vegetative thallus of the green seaweed Enteromorpha following enzymic digestion with driselase and pectinase. The viability of purified protoplast fractions was assessed by staining and measurements of O2 uptake and evolution.Abbreviations MES 2-(N-morpholino) ethanesulphonic acid - TES N-tris(hydoxymethyl) methyl-2 aminoethanesulphonic acid  相似文献   

20.
Summary Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granulebound starch synthase (GBSS) into the amylose-free starch mutantamf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates thatAmf is the structural gene for GBSS. Amylose was found in columella cells of root tips, in stomatal guard cells, tubers, and pollen, while in the control experiments using only vector DNA, these tissues remained amylose free. This confirms the fact that, in potato, GBSS is the only enzyme responsible for the presence of amylose, accumulating in all starch-containing tissues. Amylose-containing transformants showed no positive correlation between GBSS activity and amylose content, which confirms that the former is not the sole regulating factor in amylose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号