首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine inhibits angiotensin II-stimulated aldosterone production by an effect on the late phase of biosynthesis. This study was undertaken to investigate the effect of dopamine on potassium-stimulated aldosterone biosynthesis in adrenal glomerulosa cells in vitro. As potassium concentrations were increased from 0 to 12 mM, aldosterone production increased up to 6 mM potassium, but not beyond this concentration. Dopamine (10(-5)M) inhibited the aldosterone response to potassium. The effect of potassium on pregnenolone accumulation (the early phase of aldosterone biosynthesis) was assessed in cells treated with trilostane which inhibits the conversion of pregnenolone onward to aldosterone. Increasing potassium concentrations up to 12 mM gave increasing pregnenolone accumulation; however dopamine did not influence this effect. The potassium stimulated conversion of corticosterone to aldosterone, an index of activity in the late phase of aldosterone biosynthesis, was assessed using aminoglutethimide to prevent cholesterol side-chain cleavage. Significantly more corticosterone was converted to aldosterone at 6 mM potassium than at 0 or 12 mM; dopamine inhibited the conversion of corticosterone to aldosterone at 6 mM potassium. These data indicate that dopamine inhibits potassium-stimulated aldosterone production by an effect restricted to the late phase of the aldosterone biosynthetic pathway similar to its previously established effect on angiotensin II-stimulated aldosterone biosynthesis.  相似文献   

2.
Acute effects and action mechanisms of prolactin (PRL) on aldosterone secretion in zona glomerulosa (ZG) cells were investigated in ovariectomized rats. Administration of ovine PRL (oPRL) increased aldosterone secretion in a dose-dependent manner. Incubation of [3H]-pregnenolone combined with oPRL increased the production of [3H]-aldosterone and [3H]-deoxycorticosterone but decreased the accumulation of [3H]-corticosterone. Administration of oPRL produced a marked increase of adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in ZG cells. The stimulatory effect of oPRL on aldosterone secretion was attenuated by the administration of angiotensin II (Ang II) and high potassium. The Ca2+ chelator, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, 10(-2) M), inhibited the basal release of aldosterone and completely suppressed the stimulatory effects of oPRL on aldosterone secretion. The stimulatory effects of oPRL on aldosterone secretion were attenuated by the administration of nifedipine (L-type Ca2+ channel blocker) and tetrandrine (T-type Ca2+ channel blocker). These data suggest that the increase of aldosterone secretion by oPRL is in part due to (1) the increase of cAMP production, (2) the activation of both L- and T-type Ca2+ channels, and (3) the activation of 21-hydroxylase and aldosterone synthase in rat ZG cells.  相似文献   

3.
When angiotensin II stimulates aldosterone secretion, it causes a rapid but transient mobilization of calcium from an intracellular pool and a sustained increase in the influx of calcium in adrenal glomerulosa cells. The present studies were undertaken to determine the respective roles of the two angiotensin II-induced changes in cellular calcium metabolism in modulating events during the sustained phase of cellular response which is thought to be mediated by the C-kinase branch of the calcium messenger system. The sustained response to angiotensin II is only 50% of maximal in cells pretreated with dantrolene in a concentration sufficient to inhibit the angiotensin II-induced mobilization of intracellular calcium. Also, if A23187 is added to cells simultaneously with 1-oleoyl-2-acetylglycerol (OAG), the aldosterone secretory response is similar to that seen after angiotensin II. However, if A23187 is added first and the transient aldosterone secretory response allowed to decay, and OAG then added, the sustained aldosterone secretory response is only 45-50% of maximal. Addition of the calcium channel agonist, BAY K 8644, with OAG leads to an aldosterone secretory response which is only 50% of maximal, but if upon addition of OAG and BAY K 8644 the cells are also exposed for 5 min to media containing 8 mM K+, then the sustained secretory response is maximal. These data imply that the initial transient rise in the [Ca2+] of the cell cytosol plays a role in determining the extent to which C-kinase is shifted from its calcium-insensitive to its calcium-sensitive form. The second group of experiments examined the relationship between the sustained angiotensin II-induced increase in plasma membrane calcium influx and the sustained aldosterone secretory response. The results show that in the presence of 1 microM nitrendipine or 2 mM extracellular K+, angiotensin II causes no increase in calcium influx and only a transient rather than a sustained increase in the rate of aldosterone secretion indicating that the sustained phase of the response is dependent upon a continued high rate of Ca2+ influx which regulates the rate of turnover of the activated C-kinase.  相似文献   

4.
To investigate the role of calcium as a second messenger in serotonin-stimulated aldosterone secretion, radiolabelled calcium influx studies were carried out in purified rat adrenal zona glomerulosa cells using 45CaCl2. The results show that serotonin caused calcium influx within 45 seconds of addition and this continued for up to 105 seconds. Angiotensin II also caused calcium influx; however, the effect was significantly smaller than that of serotonin. Serotonin-stimulated calcium influx could be inhibited by the calcium antagonist verapamil and by methysergide, a selective serotonin receptor type-1/2 antagonist. The data indicate that serotonin directly stimulates calcium uptake in zona glomerulosa cells via calcium channels which are coupled to specific serotonin receptors.  相似文献   

5.
6.
Alkylphenol ethoxylate, which consists of approximately 80% nonylphenol ethoxylate (NPE), is a major nonionic surfactant. Nonylphenol (NP), the primary degradation product of NPE, has been reported to interfere with reproduction in fish, reptiles, and mammals by inducing cell death in the gonads and by affecting other reproductive parameters. However, the effects of NP on rat adrenal zona glomerulosa cells (ZG) and the underlying mechanisms remain unclear. In this study, we explored the effects of NP on aldosterone release. ZG cells were incubated with NP in the presence or absence of the secretagogues angiotensin II (ANG II), potassium, 8-Br-cAMP, 25-OH-cholesterol, corticosterone or cyclopiazonic acid (CPA). After performing radioimmunoassay (RIA) and Western blot analysis, we found that (1) NP stimulated aldosterone release in cells induced by ANG II, KCl, 8-Br-cAMP, 25-OH-cholesterol, corticosterone, and CPA; (2) NP triggered the release of higher amounts of pregnenolone in cells treated with vehicle and 25-OH-cholesterol+trilostane than in cells treated with other compounds; and (3) the stimulatory effect of NP seemed to be mediated through steroidogenic acute regulatory protein (StAR) and aldosterone synthase activity. These observations suggest that the effects of NP are mediated via increased free Ca(2+) in the cytoplasm.  相似文献   

7.
Endothelins are thought to be involved in the local regulation of blood flow and tissue function. These experiments were carried out to investigate the possible role of endothelins in the control of aldosterone secretion by the rat adrenal. Suspensions of zona glomerulosa cells were prepared by collagenase digestion of capsular tissue, and incubated in the presence of increasing concentrations of endothelin. Aldosterone was measured by RIA. All three peptides caused a dose-dependent increase in the secretion rate of aldosterone by zona glomerulosa cells. The minimum concentration of peptide required to give a significant response was 10(-14) mol/l for endothelins 2 and 3 and 10(-13) mol/l for endothelin 1. At a concentration of 10(-7) mol/l endothelin 2 elicited a 20-fold increase over basal aldosterone secretion, while both endothelins 1 and 3 elicited a 30-fold increase (P less than 0.001 in all cases). These results show that the endothelins are potent stimulators of aldosterone secretion, and suggest that these peptides may have a role in the control of zona glomerulosa function.  相似文献   

8.
The cell-attached recording mode of the patch-clamp technique was used to study Ca2+ permeable background currents of glomerulosa cells from rat and bovine adrenal gland. With a pipette filled with 110 mM BaCl2 or 90 mM CaCl2, three different types of unitary currents were detected. The B1 channel demonstrates a nonlinear I-V curve. The conductances are 4 and 7 pS at -40 and -70 mV, respectively. The curve of the opening probability vs. membrane potential is bell shaped with its maximum at -70 mV. The B2 channel has a conductance of 6 pS, while the B3 channel shows a nonlinear I-V relationship with conductances close to 17 and 10 pS at HPs of -60 and -20 mV. The three types of currents are insensitive to dihydropyridines. We suggest that these background currents could be responsible for the basal calcium influx and aldosterone secretion previously observed in nonstimulated glomerulosa cells.  相似文献   

9.
We examined the effect of rat atrial natriuretic peptide (ANP) on ACTH, dibutyryl cAMP, angiotensin II and potassium-stimulated aldosterone secretion by dispersed rat adrenal glomerulosa cells. ANP inhibited ACTH, angiotensin II and potassium-stimulated aldosterone secretion with IC50's between 0.15-0.20 nM. Inhibition by 10 nM ANP could not be overcome with higher concentrations of these stimuli. ANP shifted the dibutyryl cAMP dose-response curve slightly to the right but did not blunt the maximal aldosterone secretory response. The sites of ANP inhibition in the aldosterone biosynthetic pathway for these stimuli were also examined. ANP inhibited activation of the cholesterol desmolase (CD) enzyme complex by ACTH, angiotensin II and potassium. Activation of the corticosterone methyl oxidase (CMO) enzyme complex by potassium was inhibited by ANP, however, activation by ACTH was not blocked. We concluded that: 1) ANP is a potent inhibitor of ACTH, angiotensin II and potassium-stimulated aldosterone secretion; 2) inhibition of ACTH stimulation is primarily due to lower cAMP levels and; 3) inhibition of angiotensin II and potassium stimulation reflects a block in the activating mechanism of the CMO and/or CD enzyme complexes, whereas CD but not CMO activation by ACTH is inhibited by ANP.  相似文献   

10.
The secretion of aldosterone and its responses to stimulation have been studied in rat adrenal zona glomerulosa tissue incubated as intact capsules or as collagenase-dispersed cell suspensions, and in intact perfused rat adrenal glands. Several differences are apparent in the functions of the various preparations. Aldosterone secretion rates are similar in incubated intact capsules and in the perfused gland. Relative to corticosterone, lower yields of aldosterone are obtained in dispersed glomerulosa cell in vitro. This may be related to the loss in the dispersed cells of a pool of tissue steroid (aldosterone or a precursor) which is revealed only in intact tissue incubations by trypsin stimulation of aldosterone secretion. Trypsin-released aldosterone is increased by prior dietary sodium restriction. In addition, differences occur in the responses of dispersed cells and perfused glands to stimulation. Perfused glands from animals on a normal diet are less sensitive to stimulation by ACTH or alpha-MSH, but more sensitive than dispersed cells to angiotensin II amide. In the perfused gland, sensitivity of response (lowest effective concentration) to all three stimulants is increased by prior dietary sodium restriction, in contrast to dispersed cells in which increased sensitivity has been reported only to alpha-MSH. The perfused gland is particularly sensitive to angiotensin II amide, and a bolus administration of 1 amol gives significant stimulation in glands from animals on low sodium intake. Electrical (field) stimulation or dopamine administration at 10(-6) mol/l (which is ineffective in dispersed cells) both depress aldosterone secretion by the perfused gland. The data suggest that the sequestered pool of steroid is utilized in the perfused gland for aldosterone secretion. They furthermore suggest that in the intact gland there are mechanisms, which involve neural components, for intraglandular regulation of aldosterone secretion, which are lost in dispersed cells in vitro. Such mechanisms may be involved in sensitivity increases in sodium depletion.  相似文献   

11.
The present study was to investigate the effects and action mechanisms of dehydroepiandrosterone (DHEA) on steroidogenesis in rat adrenal zona glomerulosa cells (ZG). ZG cells were incubated with DHEA in the presence or absence of angiotensin II (AngII), a high concentration of potassium, 8-Br-cAMP, forskolin, 25-OH-cholesterol, pregnenolone, progesterone, deoxycorticosterone, corticosterone, A23187, or cyclopiazonic acid (CPA) at 37°C for 1 h. The concentration of aldosterone or pregnenolone in the culture medium was then measured by radioimmunoassay (RIA). The cells were used to determine the cellular cAMP content. The data demonstrated that: (1) DHEA inhibited AngII-, high concentration of KCl-, forskolin-, 8-Br-cAMP-, 25-OH-cholesterol-, pregnenolone-, progesterone-, deoxycorticosterone-, corticosterone-, A23187-, or CPA-stimulated aldosterone release; (2) DHEA increased 25-OH-cholesterol-stimulated pregnenolone release but not when 25-OH-cholesterol was combined with trilostane; (3) DHEA noncompetitively inhibited aldosterone synthase but showed uncompetitive inhibition of P450scc. These results suggest that DHEA acts directly on rat ZG cells to diminish aldosterone secretion by inhibition of a post-cAMP pathway or by acting on intracellular Ca2+ mobilization. In addition it affects the function of post-P450scc steroidogenic enzymes. Ling-Ling Chang and Paulus S. Wang contributed equally to this work.  相似文献   

12.
Angiotensin II (AII) induces an initial rapid but transient rise in [Ca2+]i detected with aequorin in bovine adrenal capsule strips. The rise in [Ca2+]i begins immediately after AII addition, reaches a peak in 30 seconds, and returns to near basal values within 5 minutes. The [Ca2+]i transient is receptor-mediated and its height is dose-dependent. The increase in [Ca2+]i is largely due to the release of Ca2+ from an intracellular pool. The uncorrected peak rise in [Ca2+]i after 1 X 10(-6) M beta-[asp1]-AII stimulation is approximately 3 fold, from 110 nM to 300 nM; the peak rise, corrected for diffusion and nonsynchronous cellular response, is from 110 nM to 1.2 microM. Perifusion of aequorin-loaded strips with beta-[asp1]-AII, an aminopeptidase-resistant analog of AII, allows the simultaneous measurement of [Ca2+]i and aldosterone production rate. Levels of agonist which generate a transient rise in [Ca2+]i also produce a sustained increase in aldosterone production rate, but the two events are temporally separated: the transient rise in [Ca2+]i precedes the increase in aldosterone production rate. However, there is a strong correlation, r = 0.94, between the amplitude of the initial [Ca2+]i transient and the magnitude of the sustained increase in steroid production rate.  相似文献   

13.
14.
A cytochrome P-450 capable of producing aldosterone from 11-deoxycorticosterone was purified from the zona glomerulosa of rat adrenal cortex. The enzyme was present in the mitochondria of the zona glomerulosa obtained from sodium-depleted and potassium-repleted rats but scarcely detected in those from untreated rats. It was undetectable in the mitochondria of other zones of the adrenal cortex from both the treated and untreated rats. The cytochrome P-450 was distinguishable from cytochrome P-45011 beta purified from the zonae fasciculata-reticularis mitochondria of the same rats. Molecular weights of the former and the latter cytochromes P-450, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 49,500 and 51,500, respectively, and their amino acid sequences up to the 20th residue from the N terminus were different from each other at least in one position. The former catalyzed the multihydroxylation reactions of 11-deoxycorticosterone giving corticosterone, 18-hydroxydeoxycorticosterone, 18-hydroxycorticosterone, and a significant amount of aldosterone as products. On the other hand, the latter catalyzed only 11 beta- and 18-hydroxylation reactions of the same substrate to yield either corticosterone or 18-hydroxydeoxycorticosterone. Thus, at least two forms of cytochrome P-450, which catalyze the 11 beta- and 18-hydroxylations of deoxycorticosterone, exist in rat adrenal cortex, but aldosterone synthesis is catalyzed only by the one present in the zona glomerulosa mitochondria.  相似文献   

15.
It has been shown that serine proteases are involved in aldosterone and 18-hydroxycorticosterone production by the rat adrenal zona glomerulosa in response to a variety of stimulants. From evidence presented for various tissues, including the rat adrenal cortex, the observation that adenylate cyclase can be activated by proteolytic enzymes and inhibited by protease inhibitors has led to the suggestion that serine proteases may also be involved in the hormonal stimulation of adenylate cyclase. In studies designed to test this hypothesis using protease inhibitors, only high concentrations (greater than 10(-4) M) of TAME (p-tosyl-L-arginine methyl ester) inhibited ACTH stimulated steroid and cAMP production in rat adrenal glomerulosa cells. TPCK (tosyl-L-phenylalanine chloromethylketone) and TLCK (tosyl-L-lysine chloromethylketone) were found to have a similar effect at very high concentrations (10(-2) M) but had no effect at the serine protease inhibitory concentration of 5 X 10(-6) M. Other protease inhibitors tested had no effect on ACTH-stimulated cAMP but the inhibitory effect of high concentrations of protease inhibitors on ACTH-stimulated adenylate cyclase was duplicated by the polyanion dextran sulphate. The results suggest that the inhibitors act through non-specific membrane effects and that proteases are not involved in the activation of zona glomerulosa adenylate cyclase by ACTH. In view of these findings it is concluded that a more rigorous approach should be applied to the use of protease inhibitors in whole cell systems, and that the concept of hormonal activation of adenylate cyclase via proteolytic events, which is based on studies with such inhibitors, should be reconsidered.  相似文献   

16.
The yields of aldosterone obtained during incubation of whole adrenal capsule tissue from the rat (consisting of the connective tissue capsule itself, all of the glomerulosa tissue, and some fasciculata) cannot apparently be accounted for by the gland's capacity for de novo synthesis of this steroid. Recent studies with proteolytic enzymes and inhibitors suggest that in part aldosterone output may result from the activation of proteolytic events which release aldosterone from a sequestered intraglandular pool. These proteolytic events are mimicked by the addition of trypsin to whole tissue incubations in vitro. Experiments were carried out to determine what factors may govern the size of such intraglandular steroid pools. The most remarkable effect was that prior sodium depletion greatly enhanced the yield (2-3-fold) of aldosterone on subsequent incubation of adrenal capsules with trypsin, to an extent far greater than the increase in basal (non trypsin induced) aldosterone output in this tissue. Although betamethasone (20 micrograms/ml in drinking water) and the converting enzyme inhibitor captopril (7.2 mg/day) eliminated trypsin releasable steroid in control animals, they had no effect on the enhanced levels of trypsin releasable steroid seen with sodium depletion. The data suggest that trypsin releasable steroid pools are variable in accordance with the physiological requirements of the animal, particularly in sodium depletion.  相似文献   

17.
Compelling evidence indicates that endothelins (ETs) stimulates aldosterone secretion from rat zona glomerulosa (ZG) cells, acting through the ETB receptor subtype. We have investigated the mechanisms transducing the aldosterone secretagogue signal elicited by the pure activation of ETB receptors. Aldosterone response of dispersed rat ZG cells to the selective ETB-receptor agonist BQ-3020 was not affected by inhibitors of adenylate cyclase/protein kinase (PK)A, tyrosine kinase-, mitogen-activated PK-, cyclooxygenase- and lipoxygenase-dependent pathways. In contrast, the inhibitor of phospholipase C (PLC) U-73122 abrogated, and the inhibitors of PKC, phosphatidylinositol trisphosphate (IP(3))-kinase and calmodulin (calphostin-C, wortmannin and W-7, respectively) partially prevented aldosterone response to BQ-3020. When added together, calphostin-C and wortmannin or W-7 abolished the secretagogue effect of BQ-3020. BQ-3020 elicited a marked increase in the intracellular Ca2+ concentration ([Ca2+]i) in dispersed rat ZG cells, and the effect was abolished by the Ca(2+)-release inhibitor dantrolene. The Ca2+ channel blocker nifedipine affected neither aldosterone nor Ca2+ response to BQ-3020. Collectively, our findings suggest that (1) ETs stimulate aldosterone secretion from rat ZG cells through the activation of PLC-coupled ETB receptors; (2) PLC stimulation leads to the activation of PKC and to the rise in [Ca2+]i with the ensuing activation of calmodulin; and (3) the increase in [Ca2+] is exclusively dependent on the stimulation of IP(3)-dependent Ca2+ release from intracellular stores.  相似文献   

18.
19.
Adrenomedullin (ADM) has been recently found to directly inhibit agonist-stimulated aldosterone secretion by dispersed zona glomerulosa (ZG) cells and to stimulate basal catecholamine release by adrenomedullary fragments. In light of the fact that catecholamines enhance aldosterone secretion acting in a paracrine manner, we have investigated whether these two effects of ADM may interact when the integrity of the adrenal gland is preserved. ADM increased basal aldosterone output by adrenal slices containing a core of adrenal medulla, and the effect was blocked by the beta-adrenoceptor antagonist l-alprenolol. In contrast, ADM evoked a moderate inhibition of K(+)-stimulated aldosterone production, and the blockade was complete in the presence of l-alprenolol. The in vivo bolus injection of ADM did not affect plasma aldosterone concentration (PAC) in rats under basal conditions. Conversely, when rat ZG secretory function was enhanced (by sodium restriction or infusion with angiotensin-II [ANG-II]) or depressed (by sodium loading or infusion with the angiotensin-converting enzyme inhibitor captopril), ADM evoked a sizeable decrease or increase in PAC, respectively. The prolonged infusion with the ADM receptor antagonist ADM(22-52) caused a further enhancement of PAC in sodium-restricted or ANG-II-treated rats, and a further moderate decrease of it in sodium-loaded or captopril-administered animals. RIA showed that ADM plasma concentration did not exceed a concentration of 10(-11) M in any group of animals. Under basal conditions, ADM adrenal content was 1.2-2.0 pmol/g, which may give rise to local concentrations higher than 10(-8) M (i.e. well above the minimal effective ones in vitro). ADM adrenal concentration was markedly increased (from two-fold to three-fold) by both ZG stimulatory and suppressive treatments. Collectively, our findings suggest that in vivo 1) ADM, in addition to directly inhibit aldosterone secretion, may enhance it indirectly by eliciting catecholamine release, the two actions annulling each other under basal conditions; 2) under conditions leading to enhanced aldosterone secretion, the direct inhibitory effect of ADM prevails over the indirect stimulatory one, and the reverse occurs when aldosterone secretion is decreased; and 3) the modulatory action of ADM on the aldosterone secretion has a physiological relevance, endogenous ADM being locally synthesized in adrenals.  相似文献   

20.
A method is described for preparing monolayer cultures of zona glomerulosa cells isolated from the rat adrenal cortex. Aldosterone and corticosterone were secreted by the cultures when maintained with medium containing 11 mM K+. ACTH, while stimulating aldosterone biosynthesis at first, did not maintain its long-term secretion, yet caused corticosterone production to rise to a steadily maintained level. The significance of this effect is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号