首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, we report that in the obligate aerobic yeast Yarrowia lipolytica, a protein exhibiting rhodanese (thiosulfate:cyanide sulfurtransferase) activity is associated with proton pumping NADH:ubiquinone oxidoreductase (complex I). Complex I is a key enzyme of the mitochondrial respiratory chain that contains eight iron-sulfur clusters. From a rhodanese deletion strain, we purified functional complex I that lacked the additional protein but was fully assembled and displayed no functional defects or changes in EPR signature. In contrast to previous suggestions, this indicated that the sulfurtransferase associated with Y. lipolytica complex I is not required for assembly of its iron-sulfur clusters.  相似文献   

2.
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand.  相似文献   

3.
Here we present a first assessment of the subunit inventory of mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica. A total of 37 subunits were identified. In addition to the seven central, nuclear coded, and the seven mitochondrially coded subunits, 23 accessory subunits were found based on 2D electrophoretic and mass spectroscopic analysis in combination with sequence information from the Y. lipolytica genome. Nineteen of the 23 accessory subunits are clearly conserved between Y. lipolytica and mammals. The remaining four accessory subunits include NUWM, which has no apparent homologue in any other organism and is predicted to contain a single transmembrane domain bounded by highly charged extramembraneous domains. This structural organization is shared among a group of 7 subunits in the Y. lipolytica and 14 subunits in the mammalian enzyme. Because only five of these subunits display significant evolutionary conservation, their as yet unknown function is proposed to be structure- rather than sequence-specific. The NUWM subunit could be assigned to a hydrophobic subcomplex obtained by fragmentation and sucrose gradient centrifugation. Its position within the membrane arm was determined by electron microscopic single particle analysis of Y. lipolytica complex I decorated with a NUWM-specific monoclonal antibody.  相似文献   

4.
We have cloned the nuclear gene encoding the 24-kDa iron-sulphur subunit of complex I from Neurospora crassa. The gene was inactivated in vivo by repeat-induced point-mutations, and mutant strains lacking the 24-kDa protein were isolated. Mutant nuo24 appears to assemble an almost intact complex I only lacking the 24-kDa subunit. However, we also found reduced levels of the NADH-binding, 51-kDa subunit of the enzyme. Surprisingly, the complex I from the nuo24 strain lacks NADH:ferricyanide reductase activity. In agreement with this, the respiration of intact mitochondria or mitochondrial membranes from the mutant strain is insensitive to rotenone inhibition. These results suggest that the nuo24 complex is not functioning in electron transfer and the 24-kDa protein is absolutely required for complex I activity. This phenotype may explain the findings that the 24-kDa iron-sulphur protein is reduced or absent in human mitochondrial diseases. In addition, selected substitutions of cysteine to alanine residues in the 24-kDa protein suggest that binding of the iron-sulphur centre is a requisite for protein assembly.  相似文献   

5.
Mitochondrial respiratory chain complex I undergoes transitions from active to de-activated forms. We have investigated the phenomenon in sub-mitochondrial particles from Neurospora crassa wild-type and a null-mutant lacking the 29.9 kDa nuclear-coded subunit of complex I. Based on enzymatic activities, genetic crosses and analysis of mitochondrial proteins in sucrose gradients, we found that about one-fifth of complex I with catalytic properties similar to the wild-type enzyme is assembled in the mutant. Mutant complex I still displays active/de-active transitions, indicating that other proteins are involved in the phenomenon. However, the kinetic characteristics of complex I active/de-active transitions in nuo29.9 differ from wild-type. The spontaneous de-activation of the mutant enzyme is much slower, implicating the 29.9 kDa polypeptide in this event. We suggest that the fungal 29.9 kDa protein and its homologues in other organisms may modulate the active/de-active transitions of complex I.  相似文献   

6.
Processing and secretion of the Yarrowia lipolytica RNase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Secretion of the extracellular RNase from the yeast Yarrowia lipolytica was studied in pulse-chase and immunoprecipitation experiments. A polypeptide of 45,000 daltons was immunoprecipitated from [35S]methionine-labeled cell extracts and supernatant medium by rabbit anti-RNase antiserum. The RNase was secreted rapidly; the time between synthesis and appearance in the extracellular medium was about 5 min. In pulse-chase experiments, about 50% of the RNase was still cell associated 30 min after labeling. A polypeptide of 73,000 daltons whose immunoprecipitation was blocked by an excess of purified RNase was also detected. It broke down to a polypeptide with the same mobility and same peptide map as the mature RNase. Peptide maps of the undegraded 73-kilodalton polypeptide and the intracellular mature RNase contained several peptides of identical mobility. Immunoprecipitates from cells labeled in the presence of tunicamycin contained 66- and 45-kilodalton polypeptides. Endoglycosidase H treatment of the 73-kilodalton polypeptide converted it to a 66-kilodalton form, but did not change the apparent molecular weight of the mature form of the RNase. Labeling kinetics from pulse-chase experiments did not clearly support a precursor-product relationship between the 73-kilodalton polypeptide and the intracellular 45-kilodalton form of the RNase, and other relationships between the two polypeptides are possible.  相似文献   

7.
Mitochondrial proton-translocating NADH:ubiquinone oxidoreductase (complex I) couples the transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the mitochondrial inner membrane. Subunit PSST is the most likely carrier of iron-sulfur cluster N2, which has been proposed to play a crucial role in ubiquinone reduction and proton pumping. To explore the function of this subunit we have generated site-directed mutants of all eight highly conserved acidic residues in the Yarrowia lipolytica homologue, the NUKM protein. Mutants D99N and D115N had only 5 and 8% of the wild type catalytic activity, respectively. In both cases complex I was stably assembled but electron paramagnetic resonance spectra of the purified enzyme showed a reduced N2 signal (about 50%). In terms of complex I catalytic activity, almost identical results were obtained when the aspartates were individually changed to glutamates or to glycines. Mutations of other conserved acidic residues had less dramatic effects on catalytic activity and did not prevent assembly of iron-sulfur cluster N2. This excludes all conserved acidic residues in the PSST subunit as fourth ligands of this redox center. The results are discussed in the light of the structural similarities to the homologous small subunit of water-soluble [NiFe] hydrogenases.  相似文献   

8.
A nuclear gene encoding a 9.8 kDa subunit of complex I, the homologue of mammalian MWFE protein, was identified in the genome of Neurospora crassa. The gene was cloned and inactivated in vivo by the generation of repeat-induced point mutations. Fungal mutant strains lacking the 9.8 kDa polypeptide were subsequently isolated. Analyses of mitochondrial proteins from mutant nuo9.8 indicate that the membrane and peripheral arms of complex I fail to assemble. Respiration of mutant mitochondria on matrix NADH is rotenone-insensitive, confirming that the 9.8 kDa protein is required for the assembly and activity of complex I. We found a similarity between the MWFE homologues and the C-terminal part of the nqrA subunit of bacterial Na(+)-translocating NADH:quinone oxidoreductases (Na(+)-NQR), suggesting a link between proton-pumping and sodium-pumping NADH dehydrogenases.  相似文献   

9.
10.
PEX genes encode peroxins, which are required for the biogenesis of peroxisomes. The Yarrowia lipolytica PEX17 gene encodes the peroxin Pex17p, which is 671 amino acids in length and has a predicted molecular mass of 75,588 Da. Pex17p is peripherally associated with the peroxisomal membrane. The carboxyl-terminal tripeptide, Gly-Thr-Leu, of Pex17p is not necessary for its targeting to peroxisomes. Synthesis of Pex17p is low in cells grown in glucose-containing medium and increases after the cells are shifted to oleic acid-containing medium. Cells of the pex17-1 mutant, the original mutant strain, and the pex17-KA mutant, a strain in which most of the PEX17 gene is deleted, fail to form normal peroxisomes but instead contain numerous large, multimembraned structures. The import of peroxisomal matrix proteins in these mutants is selectively impaired. This selective import is not a function of the nature of the peroxisomal targeting signal. We suggest a regulatory role for Pex17p in the import of a subset of matrix proteins into peroxisomes.  相似文献   

11.
NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron-sulphur (Fe-S) clusters. Little is known about the assembly of complex I and its Fe-S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe-S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe-S clusters showed that only a minor fraction (approximately 20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe-4S] cluster that was readily transferred to an acceptor Fe-S protein. Our data suggest that Ind1 facilitates the assembly of Fe-S cofactors and subunits of complex I.  相似文献   

12.
Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered down-regulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed down-regulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one-carbon metabolism is a molecular feature in the biology of Sengers syndrome.  相似文献   

13.
We investigated how asparagine (N)-linked glycosylation affects assembly of acetylcholine receptors (AChRs) in the endoplasmic reticulum (ER). Block of N-linked glycosylation inhibited AChR assembly whereas block of glucose trimming partially blocked assembly at the late stages. Removal of each of seven glycans had a distinct effect on AChR assembly, ranging from no effect to total loss of assembly. Because the chaperone calnexin (CN) associates with N-linked glycans, we examined CN interactions with AChR subunits. CN rapidly associates with 50% or more of newly synthesized AChR subunits, but not with subunits after maturation. Block of N-linked glycosylation or trimming did not alter CN-AChR subunit associations nor did subunit mutations prevent N-linked glycosylation. Additionally, CN associations with subunits lacking N-linked glycans occurred without subunit aggregation or misfolding. Our data indicate that CN associates with AChR subunits without N-linked glycan interactions. Furthermore, CN-subunit associations only occur early in AChR assembly and have no role in events later that require N-linked glycosylation.  相似文献   

14.
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second beta-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.  相似文献   

15.
Albina Abdrakhmanova 《BBA》2006,1757(12):1676-1682
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second β-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.  相似文献   

16.
The biogenesis of mitochondrial NADH:ubiquinone oxidoreductase (complex I) requires several assembly chaperones. These so-called complex I assembly factors have emerged as a new class of human disease genes. Here, we identified putative assembly factor homologues in Caenorhabditis elegans. We demonstrate that two candidates (C50B8.3/NUAF-1, homologue of NDUFAF1 and R07H5.3/NUAF-3, homologue of NDUFAF3) clearly affect complex I function. Assembly factor deficient worms were shorter, showed a diminished brood size and displayed reduced fat content. Our results suggest that mitochondrial complex I biogenesis is evolutionarily conserved. Moreover, Caenorhabditis elegans appears to be a promising model organism to study assembly factor related human diseases.  相似文献   

17.
18.
A major 70 kDa protein of the yeast mitochondrial outer membrane is coded by a nuclear gene, synthesized on cytoplasmic ribosomes, and transported to the mitochondrial outer membrane. In order to investigate in detail the information necessary for localizing the 70 kDa protein at the outer membrane, we have examined the intracellular and intramitochondrial location of fusion proteins which consist of various lengths of the amino-terminal region of the 70 kDa protein with an enzymatically active beta-galactosidase. The results indicate that the extreme amino-terminal 12 amino acids of the 70 kDa protein function as a targeting sequence, whereas the subsequent uncharged region (up to residue 29) is necessary for "stop-transfer" and "anchoring" functions. Moreover, we have found that a fusion protein which contained the amino-terminal 19 amino acids of the 70 kDa protein is localized on the outer membrane as well as in the matrix space. Changes in the dual localization of this fusion protein accompanied its overproduction or expression in a respiration-deficient yeast mutant.  相似文献   

19.
Spermatids derived from a single gonial cell remain interconnected within a cyst and elongate by synchronized growth inside the testis in Drosophila. Cylindrical spectrin-rich elongation cones form at their distal ends during the growth. The mechanism underlying this process is poorly understood. We found that developing sperm tails were abnormally coiled at the growing ends inside the cysts in the Drosophila Dynein light chain 1 (ddlc1) hemizygous mutant testis. A quantitative assay showed that average number of elongation cones was reduced, they were increasingly deformed, and average cyst lengths were shortened in ddlc1 hemizygous testes. These phenotypes were further enhanced by additional partial reduction of Dhc64C and Glued and rescued by Myc-PIN/LC8 expression in the gonial cells in ddlc1 backgrounds. Furthermore, DDLC1, DHC, and GLUED were enriched at the distal ends of growing spermatids. Finally, ultrastructure analysis of ddlc1 testes revealed abnormally formed interspermatid membrane, but the 9 + 2 microtubule organization, the radial spoke structures, and the Dynein arms of the axoneme were normal. Together, these findings suggest that axoneme assembly and spermatid growth involve independent mechanisms in Drosophila and DDLC1 interacts with the Dynein-Dynactin complex at the distal ends of spermatids to maintain the spectrin cytoskeleton assembly and cell growth.  相似文献   

20.
The subunits of complex I encoded by the mammalian nuclear genes NDUFS4 (AQDQ protein) and NDUFB11 (ESSS protein) contain serine/threonine consensus phosphorylation sequences (CPS) in their presequence, the first also in the C-terminus. We have studied the impact of PKA mediated phosphorylation on the mitochondrial import of in vitro and in vivo synthesized NDUFS4 protein. The intramitochondrial accumulation of the mature form of in vitro synthesized NDUFS4 protein, but not that of ESSS protein, was promoted by PKA and depressed by alkaline phosphatase (AP). In HeLa cells, control or transfected with the NDUFS4 cDNA construct, the mitochondrial level of mature NDUFS4 protein was promoted by 8-Br-cAMP and depressed by H89. Ser173Ala mutagenesis in the C-terminus CPS abolished the appearance in mitochondria of the mature form of NDUFS4 protein. The promoting effect of PKA on the mitochondrial accumulation of mature NDUFS4 protein appears to be due to inhibition of its retrograde diffusion into the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号