首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The binding of [3H]spiperone, a neuroleptic/dopamine receptor ligand, to membranes of the ventral tegmental area of the rat was studied in vitro and found to be rapid, saturable, reversible, and of high affinity. Specific binding was displaced by the dopaminergic agonists dopamine, apomorphine, and 2-amino-6,7-dihydroxytetralin, and stereospecifically by the neuroleptic drugs butaclamol and flupenthixol. Bromocryptine and other ergots displaced the binding, as did the D-2 antagonists domperidone, molindone, metoclopramide, and sulpiride. Noradrenergic, histaminergic, and serotonergic components of the binding were not detected in displacement studies with various agonists and antagonists. These data are consistent with the hypothesis that [3H]spiperone labels dopamine receptors in the ventral tegmental area that are not linked to adenylate cyclase and are therefore likely to be of the D-2 type.  相似文献   

2.
Abstract: The specific binding of L-[3H]glutamate to its receptors was investigated on crude membrane preparations from different brain regions of pentylenetetrazole-kindled rats using a binding assay technique. Pentylenetetrazole kindling induced by 10 intraperitoneal applications of 45 mg/kg over a period of 20 days resulted in a significant increase of both the convulsive susceptibility of animals to the convulsant and the specific L-[3H]glutamate binding in hippocampus and in motor, frontal, and inferiotemporal (acoustic) cortex tested with a L-[3H]glutamate concentration of 50 n M . No differences were observed in the other brain structures studied. Kinetic studies indicated that the enhanced L-[3H]glutamate binding to hippocampal membranes from kindled rats reflects changes in the density of the glutamate binding sites rather than an increase in receptor affinity. To study the effect of acute generalized convulsions on L-[3H]glutamate binding to synaptosomal membranes of hippocampus and visual cortex, rats were treated 24 h before the experiment with 60 mg/kg of pentylenetetrazole, i.p. Under these conditions, no differences between treated and control rats were observed. From these findings, it is concluded that the increase in glutamate receptor density demonstrated in hippocampus and several neocortical brain structures of pentylenetetrazole-kindled rats may be the expression of a specific enhancement of susceptibility of glutamatergic systems to this excitatory amino acid developing in the course of formation of pentylenetetrazole-induced kindling.  相似文献   

3.
Abstract: A specific binding site for [3H]metergoline characterized by a KD of 0.5–1.0 nM was detected in microsomal and synaptic plasma membranes from various areas of the adult rat brain. Experiments with 5,7-dihydroxy-tryptamine- and kainic acid-induced lesions indicated that this specific binding site was localized post-synaptically with respect to serotoninergic neurons. The pharmacological characteristics of [3H]metergoline binding to microsomal membranes from the whole forebrain strongly suggest that this ligand labels a class of serotonin receptors. This was particularly obvious in the hippocampus in which serotonin was about 400 times more potent than dopamine and norad-renaline for displacing bound [3H]metergoline. In the striatum, serotonin was only 10 times as potent as dopamine in inhibiting [3H]metergoline binding, suggesting that this ligand may also bind to dopamine receptors. Striking similarities between the binding sites for [3H]metergoline and [3H]serotonin were observed in the hippocampus. Thus, not only the total numbers of binding sites for these two ligands in control rats but also their respective increases following intracerebral 5,7-dihydroxytryptamine treatment were very similar. Therefore, at least in the hippocampus, [3H]metergoline might well be the appropriate ligand for studying the characteristics of the 'antagonist form' of serotonin receptors postulated by Bennett and Snyder.  相似文献   

4.
Abstract— [3H]Choline uptake has been measured in vivo in the rat hippocampus. Pharmacological agents and lesions which profoundly affect sodium-dependent, high-affinity [3H]choline uptake in vivo similarly affect [3H]choline uptake measured in vitro. Pentobarbital (65 mg/kg) and oxotremorine (0.75 mg kg) cause a decrease in [3H]choline uptake. Scopolamine (5 mg/kg) and iontophoretically applied extracellular potassium cause an increase in [3H]choline uptake. Septal lesions cause a decrease in [3H]choline uptake. Application of the general method may allow direct examination of presynaptic function and neural integration in the undisrupted living mammalian brain.  相似文献   

5.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

6.
Abstract: The isolated neurointermediate lobe (NIL) of the rat hypophysis accumulates [3H]dopamine from the incubation medium. Column chromatographic analysis showed that 92% of the tissue radioactivity was contained in the catecholamine fraction. [3H]Dopamine represented 70% and [3H]noradrenaline 30% of the [3H]catecholamines. Desipramine (1 μM) prevented the formation of [3H]noradrenaline without affecting the storage of [3H]dopamine. Nomifensine (10 μM) blocked the storage of [3H]dopamine and [3H]noradrenaline. Thus, in the NIL, [3H]dopamine is taken up into dopaminergic and noradrenergic neurones. In the latter, [3H]dopamine is converted to [3H]noradrenaline, indicating a significant dopamine β-hydroxylase activity in the NIL tissue. A selective labeling of the dopamine stores with [3H]dopamine can be achieved in the presence of desipramine.  相似文献   

7.
Abstract: In contrast to striatal membranes of adult rats, where high- ( K D1= 34 n M ) and low- ( K D2= 48,400 n M ) affinity binding sites for [3H]WIN 35,428 are present, in primary cultures of ventral mesencephalon neurons (CVMNs) only low-affinity binding sites were found ( K D= 336,000 n M ). The binding of [3H]WIN 35,428 in CVMNs prepared from rat embryos was reversible, saturable, and located in cytosol. Although dopamine (DA) uptake blockers inhibited [3H]DA uptake at nanomolar concentrations in CVMNs, the displacement of [3H]WIN 35,428 binding in CVMNs by DA uptake inhibitors required 100-8,000 times higher concentrations than were needed to displace [3H]WIN 35,428 binding in striatal membranes. Piperazine derivatives, e.g., GBR-12909, GBR-12935, and rimcazole, inhibited [3H]WIN 35,428 binding in CVMNs more effectively than did cocaine, WIN 35,428, mazindol, nomifensine, or benztropin. A positive correlation ( r = 0.779; p < 0.001) was found between drug affinities for the striatal membrane sites labeled by [3H]WIN 35,428 and their abilities to inhibit DA uptake in CVMNs, whereas no correlation existed between the IC50 values of drugs that inhibited [3H]WIN 35,428 binding and [3H]DA uptake in CVMNs. The cytosolic [3H]WIN 35,428 binding sites may be a piperazine acceptor and may not be involved in the regulation of the DA transporter.  相似文献   

8.
Abstract: K+-evoked acetyl[3H]choline ([3H]ACh) release was inhibited in a concentration-dependent manner by apomorphine and the D2 agonist quinpirole in striatal slices prepared from euthyroid and hypothyroid rats. However, there was a significant increase in the maximum inhibition observed with both agonists in the hypothyroid compared with the euthyroid group, which paralleled the increased D2 agonist sensitivity reported for stereotyped behavior. The D2 antagonist raclopride decreased, and the D, antagonist SCH 23390 increased, the inhibition of [3H]ACh release by apomorphine, confirming an inhibitory role for D2 receptors and an opposing role for D1 receptors. Because there is no difference in D1 or D2 receptor concentration between the euthyroid and hypothyroid groups, it is suggested that thyroid hormone modulation of D2 receptor sensitivity affects a receptor-mediated event. Following intrastriatal injection of pertussis toxin (PTX), apomorphine no longer inhibited [3H]ACh release. In fact, increased [3H]- ACh release was observed, an effect reduced by SCH 23390, providing evidence that D1 receptors enhance [3H]- ACh release, and confirming that a PTX-sensitive G protein mediates the D2 response. As it has been reported that thyroid hormones modulate G protein expression, this mechanism may underlie their effect on dopamine agonist- mediated inhibition of ACh.  相似文献   

9.
Abstract— The cerebral ventricles of spinal-sectioned cats were perfused with artificial cerebrospinal fluid after the intraventricular administration of [3H]DOPA or [3H]tyrosine. Endogenously synthesized [3H]dopamine or [3H]norepinephrine were identified in the perfusate. Electrical stimulation of catecholaminergic nerve tracts in the hypothalamus increased the efflux of both catecholamines. The addition of d -amphetamine to the perfusing cerebrospinal fluid caused a large increase in [3H]dopamine and a small increase in [3H]norepinephrine appearing in the perfusate. Most of the endogenously synthesized [3H]catecholamines detected in the perfusate following stimuli originated from structures bordering the lateral cerebral ventricle. Thus, norepinephrine and dopamine can be synthesized in and released from catecholaminergic nerve terminals in structures bordering the cerebral ventricles.  相似文献   

10.
Abstract: Addition of several polyamines, including spermidine and spermine, was effective in inhibiting binding of the antagonist ligand [3H] 5, 7-dichlorokynurenic acid ([3H]- DCKA) but not of the agonist ligand [3H] glycine ([3H] Gly) to a Gly recognition domain on the N -methyl-D-aspartic acid (NMDA) receptor ionophore complex in rat brain synaptic membranes. In contrast, [3H] DCKA binding was significantly potentiated by addition of proposed polyamine antagonists, such as ifenprodil and (±)-α-(4-chlorophenyl)-4- [(4-fluorophenyl)methyl]-1-piperidine ethanol, with [3H] Gly binding being unchanged. The inhibition by spermidine was significantly prevented by inclusion of ifenprodil. In addition, spermidine significantly attenuated the abilities of four different antagonists at the Gly domain to displace [3H] DCKA binding virtually without affecting those of four different agonists. Phospholipases A2 and C and p -chloromercuribenzosulfonic acid were invariably effective in significantly inhibiting [3H] DCKA binding with [3H] Gly binding being unaltered. Moreover, the densities of [3H] DCKA binding were not significantly different from those of [3H]- Gly binding in the hippocampus and cerebral cortex, whereas the cerebellum had more than a fourfold higher density of [3H] Gly binding than of [3H] DCKA binding. These results suggest that the Gly domain may have at least two different forms based on the preference to agonists and antagonists in the rodent brain.  相似文献   

11.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

12.
Abstract: The effects of monovalent and divalent cations on binding of [3H]spiroperidol to dopamine receptors in rat corpus striatum were studied. Both monovalent and divalent cations as well as several chelating agents increase the number of [3H] spiroperidol binding sites. Manganese is most potent, enhancing binding at 1 μ m concentration, while magnesium and calcium are at least two orders of magnitude less potent and the monovalent cations sodium, potassium and lithium are still weaker. Divalent cations enhance the potency of dopaminergic agonists in competing for [3H]spiroperidol binding, an effect which appears to be independent of the ionic augmentation of [3H]spiroperidol binding. Divalent cations decrease both the association and dissociation rates of [3H]spiroperidol binding to dopamine receptor sites.  相似文献   

13.
Abstract: The binding of [3H]flunitrazepam, [3H]RO 5-4864, and [3H]PK 11195 to membrane preparations of the retina was studied in the turtle and rabbit. Only a single population of [3H]flunitrazepam binding sites was detected in the turtle, whereas two populations appeared to be present in the rabbit. No specific binding for [3H]RO 5-4864 and [3H]PK 11195 could be detected in the turtle. In rabbit, both ligands bound with high affinity, revealing a significant population of binding sites (KD values of 24 ± 2.3 and 2.2 ± 0.8 nM, and Bmax values of 440 ± 35 and 1,482 ± 110 fmol/mg of protein, respectively). The binding was temperature - and protein-dependent. Displacement studies showed a similar rank order of potency of various unlabeled ligands against both [3H]RO 5-4864 and [3H]PK 11195 (PK 11195 > Ro 5-4864 > flunitrazepam > flumazenil). These results suggest that peripheral-type benzodiazepine receptors are present in the retina of the rabbit, but not of the turtle.  相似文献   

14.
Abstract: cis -Methyldioxolane (CD) is a muscarinic receptor agonist. [3H] CD has been used to label a subpopulation of muscarinic receptors described as exhibiting high agonist affinity. Pharmacological evidence suggests that the population of receptors labeled by [3H] CD consists of m2 and/or m4 subtypes; however, no studies have directly addressed the subtype selectivity of [3H] CD. The present study characterizes binding of this ligand to individual human receptor subtypes expressed in transfected Chinese hamster ovary cells. Results indicate that [3H] CD binds with high affinity only to Hm2 receptors but not to all Hm2 receptors. Twenty-eight percent of Hm2 receptors bound [3H] CD with a K D of 3.5 ± 0.5 nM. Binding was eliminated in the presence of guanosine 5'- O -(3-thiotriphosphate), indicating that the Hm2 receptors labeled by [3H] CD are those that are associated with GDP-bound G protein. Binding of [3H] CD by only a subpopulation of Hm2 receptors is in agreement with data generated from studies of [3H] CD binding in mammalian brain. Because muscarinic receptors have been implicated to play a role in the pathogenesis of both Alzheimer's and Parkinson's disease, as well as the neurotoxicity of organophosphorus compounds, knowledge of the binding specificity of the muscarinic agonist [3H] CD should aid research in these areas.  相似文献   

15.
Potential desensitization of brain nicotinic receptors was studied using a [3H]dopamine release assay. Nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes was concentration-dependent with an EC50 of 0.33 ± 0.13 μ M and a Hill coefficient of 1.44 ± 0.18. Desensitization by activating concentrations of nicotine had a similar EC50 and a half-time of 35 s. Concentrations of nicotine that evoked little release also induced a concentration-dependent desensitization (EC50=6.9 plusmn; 3.6 n M , t1/2= 1.6-2.0 min, n H=1.02 ± 0.01). Both types of desensitization produced a maximum 75% decrease in [3H]dopamine release. Recovery from desensitization after exposure to low or activating concentrations of nicotine was time-dependent with half-times of 6.1 min and 12.4 min, respectively. Constants determined for binding of [3H]nicotine to striatal membrane at 22°C included a K Dof 3.7 ± 0.5 n M , Bmax of 67.5 ± 2.2 fmol/mg, and Hill coefficient of 1.07 ± 0.06. Association of nicotine with membrane binding sites was biphasic with half-times of 9 s and 1.8 min. The fast rate process contributed 37% of the total reaction. Dissociation was a uniphasic process with a half-time of 1.6 min. Comparison of constants determined by the release and binding assays indicated that the [3H]-nicotine binding site could be the presynaptic receptor involved in [3H]dopamine release in mouse striatal synaptosomes.  相似文献   

16.
Abstract: Binding of [3H]LY278584, which has been previously shown to label 5-hydroxytryptamine3 (5-HT3) receptors in rat cortex, was studied in human brain. Saturation experiments revealed a homogeneous population of saturable binding sites in amygdala ( K D= 3.08 ± 0.67 n M, B max= 11.86 ± 1.87 fmol/mg of protein) as well as in hippocampus, caudate, and putamen. Specific binding was also high in nucleus accumbens and entorhinal cortex. Specific binding was negligible in neocortical areas. Kinetic studies conducted in human hippocampus revealed a K on of 0.025 ± 0.009 n M −1 min−1 and a K off of 0.010 ± 0.002 min−1. The kinetics of [3H]LY278584 binding were similar in the caudate. Pharmacological characterization of [3H]LY278584 specific binding in caudate and amygdala indicated the compound was binding to 5-HT3 receptors. We conclude that 5-HT3 receptors labeled by [3H]LY278584 are present in both limbic and striatal areas in human brain, suggesting that 5-HT3 receptor antagonists may be able to influence the dopamine system in humans, similarly to their effects in rodent studies.  相似文献   

17.
Abstract: The acetylcholine transporter exhibits such low affinity and specificity for acetylchoiine that it appeared possible it could fail to select against other neurotransmitters. Potential interactions of classical noncholinergic neurotransmitters with cholinergic synaptic vesicles purified from electric organ were studied. No active transport of [3H]serotonin, [3H]noradrenaline, or [3H]glutamate occurred. Serotonin, noradrenaline, and N -acetylaspartyl glutamate inhibited active transport of [3H]acetylcholine by the vesicles. Dopamine previously had been shown to inhibit transport. Glutamate and γ-aminobutyric acid were shown here not to inhibit active transport of [3H]-acetylcholine. Noradrenaline was competitive with respect to [3H]acetylcholine in this effect. Serotonin, noradrenaline, and dopamine inhibited binding of [3H]vesamicol to the vesicles, and dopamine was a competitive inhibitor of the binding of this allosteric ligand of the acetylcholine transporter. The results indicate that the acetylcholine transporter does not transport any other classical neurotransmitter, but serotonin, noradrenaline, and dopamine bind to the acetylcholine site.  相似文献   

18.
Abstract: [3H]Sulpiride bound to rat striatal membrane preparations with a saturable, high affinity component. This binding was displaced potently by dopamine antagonists (both classic neuroleptics and the benzamide, sulpiride) and less potently by dopamine agonists. GTP and its stable analogue Gpp(NH)p did not affect [3H]sulpiride binding to the membranes but altered the affinity for dopaminergic agonists. This effect was specific in that antagonist binding was not affected and only GTP, GDP, and Gpp(NH)p produced the effect. Similar alterations in ligand binding affinity caused by guanine nucleotides have been observed for binding sites linked to an adenylate cyclase. Such an interpretation for the case of [3H]sulpiride is contrary to suggestions that sulpiride labels only those dopamine receptors that are not cyclase linked.  相似文献   

19.
Abstract: Ascorbate-induced lipid peroxidation, as measured by malonyldialdehyde (MDA) production, caused irreversible decreases in Bmax of both [3H]5-HT and [3H]spiperone binding. Cacl2 (4mM) inhibited ascorbateinduced MDA formation at ascorbate concentrations >0.57 mM, but not at ≤ 0.57 mM. Under the standard assay conditions (5.7 mM ascorbate and 4mM CaCl2), Cacl2 inhibited the MDA production casued by ascorbate by 88%, and the loss in [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding when lipid peroxidation was completely inhibited by EDTA. This additional effect of ascorbate was reversible after washing the membranes. Other reducing agents (dithiothreitol, glutathione, and metabisulfite) also decreased the binding of [3H]serotonin. In contrast, [3H]spiperone binding was not affected by ascorbate in the absence of lipid peroxidation or by other reducing agents. These experiments demonstrate that ascorbate has a dual and differential effect on serotonin binding sites. First, ascorbate-induced lipid peroxiation irreversibly inactivates both [3H]5-HT and [3H]spiperone binding. Second, independent of lipid peroxidation, there is a direct, reversible effect of ascorbate on [3H]serotonin but not on [3H]spiperone binding, which is probably due to the difference in the biochemical nature of the two serotonin binding sites.  相似文献   

20.
Abstract: [3H]Kainate bound to chick cerebellar membranes with a K D of 0.6 μ M and with an exceptionally high B max of 165 pmol/mg of protein. In octylglucoside-solubilised extracts, the affinity of [3H]kainate was reduced ( K D= 2.7 μ M ), but the B max was relatively unchanged (130 pmol/mg of protein). The rank potency of competitive ligands was domoate > kainate > 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) > glutamate. Binding sites for α-[3H]amino-3-hydroxy-5-methylisoxazolepropionate ([3H]AMPA) were much less abundant, with K D and B max values in membranes of 86 n M and I pmol/mg of protein, respectively. The affinity of [3H]AMPA binding was also reduced on solubilisation ( K D= 465 n M ), but there was an increase in the B max (1.7 pmol/mg of protein). Quisqualate and CNQX were the most effective displacers of [3H]AMPA binding, but kainate was also a relatively potent inhibitor. However, in contrast to the displacement profile for [3H]kainate, domoate was markedly less potent than kainate at displacing [3H]AMPA. These results suggest that [3H]AMPA binds to a small subset of the kainate sites that, unlike the majority of the [3H]kainate binding protein, which has been reported to be located in the Bergmann glia, may represent neuronal unitary non- N -methyl-D-aspartate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号