首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development.  相似文献   

2.
To evaluate oxidative stress and the plant antioxidant system of Alternanthera philoxeroides [Mart.] Griseb and Oryza sativa L. in the response to drought, root and leaf tissues of drought-treated A. philoxeroides and O. sativa were collected and relative water content, stomatal conductance, the concentrations of malondialdehyde, proline and the activities of superoxide dismutase, peroxidases, catalase and total antioxidative activity investigated. The results showed that drought treatment had almost no effect on relative water content in A. philoxeroides but reduced relative water content in O. sativa. A. philoxeroides maintained a greater stomatal conductance than O. sativa under drought stress. In A. philoxeroides levels of lipid peroxidation were lower than in O. sativa and did not change during the experiment. After exposure to drought, concentrations of proline and activities of superoxide dismutase, peroxidases and catalase in A. philoxeroides were between 10% and 30% higher than in O. sativa, whereas total antioxidative activity in A. philoxeroides was several-fold higher than in O. sativa.  相似文献   

3.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

4.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

5.
Plant architecture, a collection of the important agronomic traits that determine grain production in rice, is mainly affected by factors including tillering, plant height and panicle morphology. Recently, significant progress has been made in isolating and collecting of mutants that are defective in rice plant architecture. Although our understanding of the molecular mechanisms that control rice tillering, panicle development and plant height are still limited, new findings have begun to emerge. This review, therefore, summarizes the recent progress in exploring the mechanisms that control rice plant architecture.  相似文献   

6.
7.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

8.
The SNAP25-type proteins belong to the superfamily of the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and function as important components of the vesical trafficking machinery in eukaryotic cells. In this paper, we report the cloning and expression characterization of OsSNAP32 gene, and the subcellular localization of its encoded protein. The OsSNAP32 gene contains five exons and four introns, and is located between RFLP markers C12276S and S1917 on chromosome 2 in rice. The OsSNAP32 has a molecular weight of 31.3 kD, comprises 283 amino acid residues, and contains Qb-SNARE and Qc-SNARE domains in the N- and C-terminal, respectively. Multiple sequence alignment of the SNARE domains indicates that OsSNAP32 protein is homologous to HvSNAP34 and HvSNAP28 (63% and 55% of amino acid identity respectively) from barley. The transient expression method in onion epidermal cells, revealed that OsSNAP32 is located in the plasma membrane, like other SNAP25-type proteins. Semi-quantitative RT-PCR assay showed that the OsSNAP32 is highly expressed in leaves and culms, and low in roots of rice, while hardly detected in immature spikes and flowering spikes. The expression of OsSNAP32 was significantly activated in rice seedlings treated with H2O2, PEG6000, and low temperature or after inoculation with rice blast (Magnaporthe grisea strain Hoku 1). The results suggest that this gene belongs to a novel member of this gene family encoding SNAP25-type proteins, involved in the rice responses to biotic and abiotic stresses.  相似文献   

9.
In the present investigation, we studied the possible potentiating effect of salicylic acid (SA) under Cd toxicity in Oryza sativa L. leaves. Cd treatments for 24 h reduced the shoot length, dry biomass and total chlorophyll content followed by high Cd accumulation in shoots. About 16 h presoaking with SA resulted in partial protection against Cd, as observed by minor changes in length, biomass and total chlorophyll. SA priming resulted in low Cd accumulation. Enhanced thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2) and superoxide anion (O2 ) content were seen when Cd was applied alone, while under SA priming the extent of TBARS, H2O2 and O2 were significantly low, suggesting SA-regulated protection against oxidative stress. The antioxidant enzymes like Catalase (CAT), guaiacol peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) showed varied activities under Cd alone. CAT activity increased after Cd treatment, followed by a decline in GPX and GR activity. SOD also declined at the highest concentrations with an initial increase. Under SA-priming conditions, the efficiency of the antioxidant enzymes was significantly elevated. GPx and SOD activity showed significant increase in activity. The ascorbate activity increased after Cd treatment, followed by a decline in glutathione under SA-free condition. SA priming showed gradual increase in these non-enzymic antioxidants. Our results indicate that Cd-induced oxidative stress can be regulated by SA.  相似文献   

10.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

11.
Rice exhibits the greatest aluminum (Al) tolerance compared with other cereals such as wheat, barley, maize, etc. A full-length gene, OsCS1, encoding citrate synthase, which is highly induced by aluminum toxicity in rice (Oryza sativa L.), was isolated. Sequence analysis and the sub-cellular localization of OsCS1 in yeast revealed that it is a mitochondrial citrate synthase. OsCS1 was induced by Al toxicity. Several independent transgenic tobacco lines expressing OsCS 1 exhibitted increased citrate efflux and extraordinary Al tolerance. Possible outlook for OsCS1 to be applied to enhance plant tolerance to Al toxicity was also discussed.  相似文献   

12.
A method for isolation and shoot regeneration from electrofused protoplasts of L. angustifolius and L. subcarnosus was developed. Viable protoplasts were isolated from leaves of in-vitro grown seedlings at an average yield of 6 × 105 protoplasts g−1 fresh weight. Liquid and agarose solidified B5 media were used for protoplast culture. In the liquid-culture system, all tested media, VKM, P1 and KM8p, were applicable for inducing cell division (84% of all tested petri dishes at four weeks) and colony formation. Media containing additional carbohydrates were suitable to produce compact calli with green and brown pigmentations in different combinations. Analysis of callus with molecular markers allowed to identify six somatic hybrids. However, none of the parental-protoplast derived cell colonies could develop shoots. This is the first report on protoplast fusion of L. angustifolius and L. subcarnosus with subsequent shoot regeneration.  相似文献   

13.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   

14.
A pea rust fungus, Uromyces viciae-fabae, has been classified into two varieties, var. viciae-fabae and var. orobi, based on differences in urediniospore wall thickness and putative host specificity in Japan. In principal component analyses, morphological features of urediniospores and teliospores of 94 rust specimens from Vicia, Lathyrus, and Pisum did not show definite host-specific morphological groups. In molecular analyses, 23 Uromyces specimens from Vicia, Lathyrus, and Pisum formed a single genetic clade based on D1/D2 and ITS regions. Four isolates of U. viciae-fabae from V. cracca and V. unijuga could infect and sporulate on P. sativum. These results suggest that U. viciae-fabae populations on different host plants are not biologically differentiated into groups that can be recognized as varieties.Contribution no. 184, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

15.
16.
Segmental duplication is particularly frequent within plant genomes and the ability of the original single-copy gene to gain a new function for the change of regulatory elements is one of the prominent consequences of duplication. Thus, it is important to study the pattern of conserved non-coding sequence (CNS) between paralogous genes. We report the result of a survey of CNSs among paralogous regions in rice (Oryza sativa L.), as well as the comparison of CNS dataset between rice and Arabidopsis thaliana. Some common properties, such as the change of A + T content near the CNS boundaries and CNS are enriched in regulatory genes, were observed. However, the content of CNSs differs between rice and Arabidopsis, and it is interesting that the rice metabolic network includes both CNS-poor and CNS-rich genes, which indicated a fine-tuned metabolic network presents in rice.  相似文献   

17.
The putative raffinose synthase gene from rice was cloned and expressed in Escherichia coli. The enzyme displayed an optimum activity at 45°C and pH 7.0, and a sulfhydryl group was required for its activity. The enzyme was specific for galactinol and p-nitrophenyl-α-d-galactoside as galactosyl donors, and sucrose, lactose, 4−β-galactobiose, N-acetyl-d-lactosamine, trehalose and lacto-N-biose were recognized as galactosyl acceptors.  相似文献   

18.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

19.
Yang X  Chen H  Xu W  He Z  Ma M 《Plant cell reports》2007,26(10):1889-1897
The callus of Pteris vittata was induced from gametophytes generated from spores in vitro, and grew rapidly with periodical medium change. Arsenic tolerance and accumulation of P. vittata callus were compared with those of Arabidopsis thaliana callus. Cell death was not detected in P. vittata callus even at arsenate concentrations up to 2 mM; however, A. thaliana callus died at low (0.2 mM) arsenate concentrations. Meanwhile, P. vittata callus accumulated almost three times more As than A. thaliana callus when exposed to 0.2 mM arsenate. About 60% of the total As was removed when 7.5 g of P. vittata callus was cultured on 150 ml of half-strength MS liquid medium containing 450 μg As for 2 days. Furthermore, P. vittata callus, sporophytes, and gametophytes all grew well under 1 mM of arsenate and accumulated 1,250; 1,150 and 2,180 mg kg−1 dry weight As when grown on 2 mM arsenate for 15 or 30 days. The characteristics of non-differentiated cells, large biomass, ease of culture, good synchronization, and excellent As sequestering, make the callus of P. vittata a new ideal system to study the mechanisms of As hyperaccumulation and phytoremediation in As-contaminated groundwater.  相似文献   

20.
In the last decade, RNA interferences (RNAi) has proven to be an effective strategy to knock out homologous genes in a wide range of species. Based on its principle, a new generation of vectors containing an inverted target sequence separated by an intron as a loop, developing simplifications to the procedure of RNAi construction are required to improve the efficiency of gene inactivation techniques. Here, a novel polymerase chain reaction (PCR)—based RNAi vector pTCK303 with a maize ubiquitin promoter, 2 specific multiple enzyme sites, and a rice intron was constructed for monocot gene silencing. With this vector, only 1 PCR product amplified by a single pair of primers and 2 ligation reactions were needed to create an RNAi construct, which shortened the time span before being transformed into the plant. To test the efficiency of vector pTCK303, a rice geneOsGAS1 was used, and its RNAi construct was introduced into rice calli. Southern blot analysis of the transgenic rice confirmed the presence of theOsGAS1 RNAi structure. The decrease inOsGAS1 level in the transgenic rice was detected by Northern blot probed with anOsGAS1-specific sequence. Moreover, the rate of inhibition of the RNA expression level in RNAi transgenic rice was approximately 85% according to our real-time PCR. Therefore, the RNAi vector pTCK303 based on the homology-dependent gene-silencing mechanisms facilitated the inhibition of endogenous genes in a monocot and was proven to be a practical and efficient platform for silencing a rice gene. These authors contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号