首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
反相胶束体系中的酶学研究   总被引:14,自引:1,他引:13  
反胶束是新的酶学研究体系,酶在反胶束体系中的性质与在水溶液中相比有较大区别.评述了反胶束体系的性质及酶在其中的催化活性及构象变化,讨论了影响酶活性及构象变化的各种因素,并简单介绍了反胶束酶学研究及应用的最新进展.  相似文献   

2.
With the aim of investigating the compartmentation of nucleic acids and surfactant aggregates, we have studied the circular dichroic properties of DNA solubilized in reverse micelles. DNA incorporated in AOT/isooctane reverse micelles (AOT=bis-2-ethyl-hexyl sodium sulfosuccinate) assumes an anomalous circular dichroism (CD) spectrum with the characteristic features of a psi spectrum. Older literature observations could therefore be confirmed that attribute these spectral changes to the fact that the reverse micelles induce the formation of a condensed form of DNA. A dynamic light scattering (DLS) characterization of the DNA-containing micellar solutions was carried out, and three populations of aggregates in a polar solvent are observed, with an average radius centered at 5, 100 and 1000 nm, respectively, all three containing DNA. Several forms of DNA, including a plasmid, have been investigated. The formation of 1 microm-large aggregates depends on the DNA concentration and such aggregates disappear in the course of a few hours. Conversely, the 100 nm aggregates are stable for at least 1 day and contain DNA in a normal spectral state at low concentration and in a condensed form-it is the characteristic psi spectrum-in a higher concentration range. The solubilization of DNA in reverse micelles brings about unexpected larger structures in hydrocarbon solution, and whereas the very large component can be with all likelihood be attributed to clusters of smaller reverse micelles, the components at 100 nm radius appear to be a quite stable and characteristic feature of DNA-containing reverse micelles.  相似文献   

3.
Four chiral analogues of the surfactant Aerosol-OT (AOT) have been synthesized and characterized. All of them form reverse micelles in apolar solvents in the w0 range 0–30 (w0 = [water]/[tenside]). Reverse micellar solutions have been investigated by UV absorption and circular dichroism spectroscopies with the aim of clarifying whether the formation of the macromolecular micellar structure induces the appearance of new chromophoric bands or perturbs the existing ones. Methanolic solutions of the surfactants, in which no micellar aggregates are formed, were taken as references. One of the products 1(S),1′(S)-dimethylbisheptylsulphosuccinate sodium salt (MH-AOT) was capable of forming reverse micelles of relatively high water content (w0 up to 40) and this process was accompanied by a specific increase in the intensity of the circular dichroism band associated with the ester absorbance of the molecule. As no concomitant changes were seen in the UV absorbance spectrum, it was concluded that this observation reflected conformational events occurring within the surfactant rather than chromophoric perturbation. These results are qualitatively similar to those found recently for lecithin reverse micelles which, however, form gels at sufficiently high water contents. The chiroptical properties of these supramolecular aggregates are compared with those of covalent macromolecular systems such as polypeptides.  相似文献   

4.
Selective compartmentalization of amino acids and nucleotides according to their polarities is proposed as a physical-chemical model for the origin of the genetic code. Assumptions made in this hypothesis are: (1) an oil-slick covered the surface of the primitive ocean, constituents of which formed association colloids or micelles at the water-oil-air interfaces; (2) depending on the polarity of the media, these aggregates possessed hydrophilic and hydrophobic interiors where selective uptake of amino acids and nucleic acid constituents could take place; and 93) condensation and polymerization in the micellar phase were enhanced. According to the chromatographically observed polarities, for example, lysine and uridylate fall into the hydrophilic compartment, and phenylalanine and adenylate are enriched in the hydrophobic environment. These components could eventually be condensed to form a charged adaptor loop with an anticodon which is complementary to the presently valid codon. Only two groups of amino acids, hydrophilic and hydrophobic, were recognized by the primitive translation mechanism. Implications of this hypothesis for the further development of the genetic code is discussed. The catalytic power of micelles have been substantiated by successful synthesis of nucleotides under relatively mild conditions using thiophosphates as high energy phosphates.  相似文献   

5.
Life's diversity is built on the wide range of properties and functions that can be encoded in natural biopolymers such as polypeptides and nucleic acids. However, despite their versatility, the range of chemical functionalities is limited, particularly in the case of nucleic acids. Chemical modification of nucleic acids can greatly increase their functional diversity but access to the full phenotypic potential of such polymers requires a system of replication. Here we review progress in the chemical and enzymatic synthesis, replication and evolution of unnatural nucleic acid polymers, which promises to enable the exploration of a vast sequence space not accessible to nature and deliver ligands, catalysts and materials based on this new class of biopolymers.  相似文献   

6.
Physicochemical investigations on the aggregation of phospholipids (mainly phosphatidylcholines) in organic solvents are reviewed and compared with the aggregation behaviour of phospholipids in aqueous medium. In particular we review the data showing that phosphatidylcholines (lecithins) form reverse micellar structures in certain apolar solvents. In these systems not only low molecular weight compounds but also catalytically active enzymes and entire cells can be solubilized. In addition, highly viscous phosphatidylcholine gels can be obtained in organic solvents upon solubilizing a critical amount of water. Generally, phospholipid-based reverse micelles can be regarded as thermodynamically stable models for inverted micellar lipid structures possibly occurring in biological membranes.  相似文献   

7.
8.
9.
The behavior of proteases in lecithin reverse micelles   总被引:1,自引:0,他引:1  
Reverse micelles, formed in isooctane/alcohol by phosphatidylcholines of variable chain length (i.e. 6, 7 or 8 C atoms in the fatty acid moiety) have been studied, mostly in relation to their capability of solubilizing trypsin and alpha-chymotrypsin. It has been found that the capability of the lecithin reverse micellar systems to solubilize water is strongly affected by the chain length of the alkyl group and by the alcohol used as co-surfactant. The C8-lecithin system, i.e. 1,2-dioctanoyl-sn-glycero-3-phosphocholine, in isooctane/hexanol is the system which affords the maximal solubilization of water (up to wo 60, where wo = [H2O]/[lecithin]) and of the enzymes. The water of the water pool of lecithin reverse micelles has been investigated by 1H-NMR; the proton chemical shift as a function of wo was found to be similar to the case of reverse micelles formed by the well known negatively charged surfactant sodium bis(2-ethylhexyl sulfosuccinate). 31P-NMR studies show that the ionization behavior of phosphate groups is similar to that in bulk water, suggesting no anomaly in the pH behavior of this water pool. The stability of trypsin and alpha-chymotrypsin in the various lecithin reverse micellar system is similar and occasionally better than that in aqueous solution. The same holds for the kinetic behavior (kcat and Km have been determined for a few systems). The bell-shaped curve of the pH/activity profile in lecithin reverse micelles is, for both enzymes, shifted towards more alkaline values with respect to water. Bell-shaped curves are also obtained when studying the influence of wo on the enzyme activity, with an optimal wo which is in the range 7-10, a surprisingly small value considering that we are dealing with hydrolases. Circular dichroic studies have been carried out in order to correlate the activity with the protein conformation: for both enzymes, generally no marked perturbations appear as a consequence of the solubilization in the lecithin reverse micelles, but conditions can be found under which significant alterations are present. Certain properties of the two enzymes, which in water solution are very similar, become sharply different in reverse micelles, showing that occasionally the micellization is able to enhance the relatively small structural differences between the two proteins.  相似文献   

10.
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed “the amyloid-world” hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.  相似文献   

11.
The micellar properties of mixtures of GM1 ganglioside and the non-ionic amphiphile Triton X-100 in 25 mM Na phosphate-5 mM di Na EDTA buffer (pH = 7.0) were investigated by quasielastic light scattering in a wide range of Triton/GM1 molar ratios and in the temperature range 15–37°C. These measurements: (a) provided evidence for the formation of mixed micelles; (b) allowed the determination of such parameters as the molecular weight and the hydrodynamic radius of the mixed micelles; (c) showed the occurrence of statistical aggregates of micelles with increasing temperature and micelle concentration. Galactose oxidase was chosen for studying the relation between enzyme activity and micellar properties. The action of the enzyme on GM1 was found to be strongly dependent on the micellar structure. In particular: (a) galactose oxidase acted very poorly on homogeneous GM1 micelles, while affecting mixed GM1/Triton X-100 micelles; (b) at fixed GM1 concentration the oxidation rate increased by enhancing Triton X-100 concentration and followed a biphasic kinetics with a break at a certain Triton X-100 concentration; (c) the formation of statistical micelle aggregates was followed by inhibition of the enzyme activity.  相似文献   

12.
Ozone is shown to react with lysozyme in reverse micelles formed by 0.1 M sodium di-2-ethylhexylsulfosuccinate and 1.2-3 M water (pH 7.4) in isooctane solvent. The reaction of ozone is assessed by the oxidation of tryptophan residues in the protein to N-formylkynurenine. Cosolubilization of oleate in lysozyme-containing reverse micellar solutions at concentrations of 0.5-10 mM results in a progressive inhibition (19% to 82%) of the oxidation of tryptophan residues with a concentration for 50% inhibition around 2 mM. At this concentration of oleate, the magnitude of inhibition is independent of the micelle size and concentration, the overall interfacial area of reverse micelles, and the amount of ozone employed. These findings are discussed in terms of competitive reactions of ozone with unsaturated fatty acids and proteins in the lung lining fluid and in biological membranes.  相似文献   

13.
Enhancement of the fluorescence intensity of colchicine occurs in media of low polarity and appreciable viscosity; this is suggested to be the basis of the intensification of its fluorescence when it is bound to and immobilized in tubulin. We show here that the tubulin-bound fluorescence features of colchicine are largely reconstructed upon solubilizing it in chosen micellar aggregates that offer optimal polarities and microviscosities. Triton X-100 and bile salt micelles intensify the colchicine emission but the maximal effects are obtained with tetrameric aggregates of the peptide melittin. Estimates of the polarity, microviscosity and binding-site dimensions of colchicine are obtained using this mimetic approach. Our results suggest that well chosen micellar systems act as good models to reconstruct and analyze the spectral properties of molecules immobilized in their binding sites.  相似文献   

14.
The higher order structure of Mucor miehei lipase and micelle size in a cationic cetyltrimethylammonium bromide (CTAB) reverse micellar system was investigated. Circular dichroic (CD) measurement revealed that the lipase far-UV CD spectra changed markedly, going from buffer solution to the reverse micellar solution, and were very similar for any organic solvent used. The ellipticity of the solubilized lipase in the far-UV region markedly decreased with increasing water content (W(0): molar ratio of water to CTAB), indicating that the secondary structure of lipase changed with the water content. The linear correlation between the W(0) and the micelle size was obtained by measuring dynamic light scattering. From the linear correlation between the micelle size and W(0), the higher order structure of the solubilized lipase appears to be affected directly by the micellar interface. The species and concentration of alcohol as a cosurfactant had an inferior effect on lipase structure. Especially, at ratios of 1-pentanol to CTAB of less than 8, the secondary and tertiary structures of lipase were preserved in the reverse micelles. The CTAB concentration had little effect on the lipase structure in the micelles. The catalytic activity of the lipase solubilized in the CTAB reverse micelles increased with increasing the W(0).  相似文献   

15.
The recovery of cytochrome c and ribonuclease A from di-2-ethylhexyl sodium sulfosuccinate (AOT) reverse micelles have been examined by the gas hydrate formation. The recovery of cytochrome c depended upon the kind of gas and the water content (w0=[H2O]/[AOT]) of reverse micellar solution containing cytochrome c prepared. Recoveries of cytochrome c and ribonuclease A were more than 80%, when 1,1,1,2-tetrafluoroethane (TFE) was used as a hydrating gas. The activity of cytochrome c recovered from reverse micelles was maintained perfectly.  相似文献   

16.
In this review, we attempt to demonstrate that reverse micelles are simple artificial systems that mimic many life systems from cell division to the creation of an enzyme catalytic mechanism. For a membranous enzyme like placental alkaline phosphatase, the kinetic properties observed in reverse micelles might represent those found under physiological conditions. The reverse micellar system, consisting of a positively charged surfactant, mimics a detoxification enzyme glutathione transferase. We propose a novel island-in-oil-lake reverse micellar model for the glutathione transferase that can account for almost all the catalytic properties of this enzyme. Reverse micelles may provide an excellent model system in investigating the reaction mechanism of other detoxification enzymes.  相似文献   

17.
Edible oils contain minor surface active components that form micro-heterogeneous environments, such as reverse micelles, which can alter the rate and direction of chemical reactions. However, little is known about the role of these micro-heterogeneous environments on lipid oxidation of bulk oil. Our objective was to evaluate the ability of water, cumene hydroperoxide, oleic acid, and phosphatidylcholine to influence the structure of reverse micelles in a model oil system: sodium bis(2-ethylhexyl) sulfosuccinate (aerosol-OT; AOT) in n-hexadecane. The influence of reverse micelle structure on iron catalyzed lipid oxidation was determined using methyl linolenate as an oxidizable substrate. The size and shape of the reverse micelle were investigated by small-angle x-ray scattering, and water contents was determined by Karl Fischer titrations. Lipid hydroperoxides and thiobarbituric acid reactive substances were used to follow lipid oxidation. Our results showed that AOT formed spherical reverse micelles in hexadecane. The size of the reverse micelles increased with increased water or phosphatidylcholine concentration, but decreased upon addition of cumene hydroperoxide or oleic acid. Iron catalyzed oxidation of methyl linolenate in the reverse micelle system decreased with increasing water concentration. Addition of phosphatidylcholine into the reverse micelle systems decreased methyl linolenate oxidation compared to control and reverse micelles with added oleic acid. These results indicate that water, cumene hydroperoxide, oleic acid, and phosphatidylcholine can alter reverse micelle size and lipid oxidation rates. Understanding how these compounds influence reverse micelle structure and lipid oxidation rates could provide information on how to modify bulk oil systems to increase oxidative stability.  相似文献   

18.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

19.
Pig liver ribosomes have been solubilized in reverse micelles constituted by bis (2-ethyl hexyl) sodium sulfosuccinate (AOT) in isooctane and 3.6% water, v:v. The micellar ribosomal solutions are transparent, show no significant scattering and permit direct spectroscopic observation of the ribosomes to be made. Ultraviolet absorption and circular dichroic spectra have been recorded and indicate that the ribosomes maintain in the micellar environment their structural integrity. Some possible applications of these micellar systems are discussed.  相似文献   

20.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号