首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In poliovirus-infected HeLa-S3 cells, the protease inhibitors tolylsulfonyl-phenylalanyl chloromethyl ketone and iodoacetamide cause an accumulation of large precursor proteins, and they block viral RNA synthesis most probably via these products. Viral RNA polymerase activity can, however, be extracted by detergent containing buffer (Tris/Nonidet P-40, deoxycholate) from the inhibited cells. Only cytoplasmic extracts from infected cells treated with tolylsulfonyl-phenylalanyl chloromethyl ketone or iodoacetamide contain a protein which inhibits the in vitro polymerase reaction.  相似文献   

2.
3.
4.
5.
6.
Several studies demonstrated in experimental models and in humans synaptic plasticity impairment in some neurodegenerative and neuropsychiatric diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and schizophrenia. Recently new neurophysiological tools, such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation, have been introduced in experimental and clinical settings for studying physiology of the brain and modulating cortical activity. These techniques use noninvasive transcranial electrical or magnetic stimulation to modulate neurons activity in the human brain. Cortical stimulation might enhance or inhibit the activity of cortico?Csubcortical networks, depending on stimulus frequency and intensity, current polarity, and other stimulation parameters such as the configuration of the induced electric field and stimulation protocols. On this basis, in the last two decades, these techniques have rapidly become valuable tools to investigate physiology of the human brain and have been applied to treat drug-resistant neurological and psychiatric diseases. Here we describe these techniques and discuss the mechanisms that may explain these effects.  相似文献   

7.
8.
Cleavage of Viral Precursor Proteins In Vivo and In Vitro   总被引:26,自引:18,他引:8       下载免费PDF全文
The use of protease inhibitors causes the accumulation of very large polypeptides (polyprotein) in tissue culture cells infected with either poliovirus or echovirus 12. The effectiveness of the inhibitor varies, depending on the cell line chosen. In infected monkey kidney cells, polyprotein is not cleaved when a chymotrypsin inhibitor is added, but in infected HeLa cells a trypsin inhibitor is most effective. Therefore, at least a part of the proteolytic activity is supplied by the host cell. Extracted viral polyprotein can be cleaved in vitro by trypsin or chymotrypsin. As estimated by migration in sodium dodecyl sulfate gels and antigenicity, chymotrypsin cleavage of the poliovirus polyprotein yields fragments which are similar to the in vivo product. The polyprotein is not in soluble form but is attached to a fast-sedimenting, membrane-bound structure. Proteolytic activities in cell extracts were assayed using polyprotein as substrate, and infected and uninfected extracts produced qualitatively dissimilar cleavages.  相似文献   

9.
Superinfection with poliovirus of HeLa cells already infected with encephalomyocarditis (EMC) virus does not inhibit translation of EMC viral mRNA, whereas residual host translation is completely inhibited. This result indicates that the cap recognition factors inactivated by poliovirus are not required for translation of EMC viral mRNA in vivo, in agreement with previous in vitro experiments. This raises the question of why EMC virus has evolved a capindependent translation mechanism.  相似文献   

10.
11.
12.
Comparison of the most stable potential hairpins in the sequences of natural ribozymes with those in the randomized sequences has revealed that the hairpin loop energies are lower than expected by chance. Although these hairpins are not necessarily parts of functional structures, there is a selective pressure to diminish the destabilizing free energies of the hairpin loops. In contrast, no significant bias is observed in the stacking values of the most stable stems. In the ribozymes isolated in vitro the loops of potential hairpins are closer to random values, which can result in less efficient folding rates. Furthermore, the effects of kinetic traps seem to be more significant in the folding pathways of the in vitro isolates due to a potential to form stable stacks incompatible with the functional folds. Similarly to natural ribozyme sequences, the untranslated regions of viral RNAs also form hairpins with relatively low loop free energies. These evolutionary trends suggest ways for efficient engineering of improved RNA constructs on the basis of analysis of in vitro isolates and approaches for the search of regions coding for functional RNA structures in large genome sequences. Received: 12 January 2001 / Accepted: 21 May 2001  相似文献   

13.
14.
The CD8+ cytotoxic T lymphocyte (CTL) response is an important defence against viral invasion. Although CTL-mediated cytotoxicity has been widely studied for many years, the rate at which virus-infected cells are killed in vivo by the CTL response is poorly understood. To date the rate of CTL killing in vivo has been estimated for three virus infections but the estimates differ considerably, and killing of HIV-1-infected cells was unexpectedly low. This raises questions about the typical anti-viral capability of CTL and whether CTL killing is abnormally low in HIV-1. We estimated the rate of killing of infected cells by CD8+ T cells in two distinct persistent virus infections: sheep infected with Bovine Leukemia Virus (BLV) and humans infected with Human T Lymphotropic Virus type 1 (HTLV-1) which together with existing data allows us to study a total of five viruses in parallel. Although both BLV and HTLV-1 infection are characterised by large expansions of chronically activated CTL with immediate effector function ex vivo and no evidence of overt immune suppression, our estimates are at the lower end of the reported range. This enables us to put current estimates into perspective and shows that CTL killing of HIV-infected cells may not be atypically low. The estimates at the higher end of the range are obtained in more manipulated systems and may thus represent the potential rather than the realised CTL efficiency.  相似文献   

15.
The ability of the rice (Oryza sativa L.) seedling to tolerate extended hypoxia during submergence is largely attributed to the biochemical adaptation of its coleoptile. Rice coleoptiles are capable of sustaining ATP production and cytoplasmic pH, unlike flood-sensitive organs, such as maize shoots. Fermentation reactions leading to the production of ethanol, alanine, succinate, and -aminobutyrate (GAB) are active in both types of tissues and thus may not account for the difference in tolerance. We have shown previously that rice coleoptiles undergo nitrate reduction and metabolism, which is efficient in alleviating cytoplasmic acidosis and regenerating NAD. Here, we employed 13C-2-acetate tracer methods with in vivo 13C NMR measurement, including in vivo isotopomer analysis, to probe the tricarboxylic acid (TCA) cycle and interacting pathways in rice coleoptiles during anaerobiosis. We found that the TCA cycle underwent multiple turns based on the metabolic scrambling of 13C label patterns in glutamine and malate. The in vivo kinetics of the 13C label incorporation into glutamic acid, glutamine, and GAB supports a separate pool of glutamate that was derived from the glutamate dehydrogenase reaction and subsequently decarboxylated to yield GAB. Both reactions consume additional H+ and/or NADH. Moreover, the higher rate of 13C enrichment at C-3 than C-2 of malate suggests the contribution of the glyoxylate cycle to malate synthesis, which could replenish the TCA cycle carbons diverted to GAB, glutamate, and glutamine synthesis. All of the above reactions contribute to the maintenance of glycolysis for energy production.  相似文献   

16.
Most (if not all) SPP1 RNA can be synthesized in infected cells in the presence of chloramphenicol, or in vitro by Bacillus subtilis RNA polymerase.  相似文献   

17.
The host protein CPSF6 possesses a domain that can interact with the HIV-1 capsid (CA) protein. CPSF6 has been implicated in regulating HIV-1 nuclear entry. However, its functional significance for HIV-1 replication has yet to be firmly established. Here we provide evidence for two divergent functions of CPSF6 for HIV-1 replication in vivo. We demonstrate that endogenous CPSF6 exerts an inhibitory effect on naturally occurring HIV-1 variants in individuals carrying the HLA-B27 allele. Conversely, we find a strong selective pressure in these individuals to preserve CPSF6 binding, while escaping from the restrictive activity by CPSF6. This active maintenance of CPSF6 binding during HIV-1 CA evolution in vivo contrasts with the in vitro viral evolution, which can reduce CPSF6 binding to evade from CPSF6-mediated restriction. Thus, these observations argue for a beneficial role of CPSF6 for HIV-1 in vivo. CPSF6-mediated restriction renders HIV-1 less dependent or independent from TNPO3, RanBP2 and Nup153, host factors implicated in HIV-1 nuclear entry. However, viral evolution that maintains CPSF6 binding in HLA-B27+ subjects invariably restores the ability to utilize these host factors, which may be the major selective pressure for CPSF6 binding in vivo. Our study uncovers two opposing CA-dependent functions of CPSF6 in HIV-1 replication in vivo; however, the benefit for binding CPSF6 appears to outweigh the cost, providing support for a vital function of CPSF6 during HIV-1 replication in vivo.  相似文献   

18.
Studies on the replication of the pestivirus bovine viral diarrhea virus (BVDV) were considerably facilitated by the recent discovery of an autonomous subgenomic BVDV RNA replicon (DI9c). DI9c comprises mainly the untranslated regions of the viral genome and the coding region of the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. To assess the significance of the NS3-associated nucleoside triphosphatase/helicase activity during RNA replication and to explore other functional features of NS3, we generated a repertoire of DI9c derivatives bearing in-frame mutations in different parts of the NS3 coding unit. Most alterations resulted in deficient replicons, several of which encoded an NS3 protein with an inhibited protease function. Three lesions permitted replication, though at a lower level than that of the wild-type RNA, i.e., replacement of the third position of the DEYH helicase motif II by either T or F and an insertion of four amino acid residues in the C-terminal part of NS3. While polyprotein proteolysis was found to be almost unaffected in these latter replicons, in vitro studies with the purified mutant NS3 proteins revealed a significantly impaired helicase activity for the motif II substitutions. NS3 with a DEFH motif, moreover, showed a significantly lower ATPase activity. In contrast, the C-terminal insertion had no negative impact on the ATPase/RNA helicase activity of NS3. All three mutations affected the synthesis of both replication products-negative-strand intermediate and progeny positive-strand RNA-in a symmetric manner. Unexpectedly, various attempts to rescue or enhance the replication capability of nonfunctional or less functional DI9c NS3 derivatives, respectively, by providing intact NS3 in trans failed. Our experimental data thus demonstrate that the diverse enzymatic activities of the NS3 protein-in particular the ATPase/RNA helicase-play a pivotal role even during early steps of the viral replication pathway. They may further indicate the C-terminal part of NS3 to be an important functional determinant of the RNA replication process.  相似文献   

19.
20.
Viral microRNAs (miRNAs), most of which are characterized in cell lines, have been found to play important roles in the virus life cycle to avoid attack by the host immune system or to keep virus in the latency state. Viral miRNAs targeting virus genes can inhibit virus infection. In this study, in vivo findings in Marsupenaeus japonicus shrimp revealed that the viral miRNAs could target virus genes and further promote the virus infection. The results showed that white spot syndrome virus (WSSV)-encoded miRNAs WSSV-miR-66 and WSSV-miR-68 were transcribed at the early stage of WSSV infection. When the expression of WSSV-miR-66 and WSSV-miR-68 was silenced with sequence-specific anti-miRNA oligonucleotides (AMOs), the number of copies of WSSV and the WSSV-infected shrimp mortality were significantly decreased, indicating that the two viral miRNAs had a great effect on virus infection. It was revealed that the WSSV wsv094 and wsv177 genes were the targets of WSSV-miR-66 and that the wsv248 and wsv309 genes were the targets of WSSV-miR-68. The data demonstrate that the four target genes play negative roles in the WSSV infection. The targeting of the four virus genes by WSSV-miR-66 and WSSV-miR-68 led to the promotion of virus infection. Therefore, our in vivo findings show a novel aspect of viral miRNAs in virus-host interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号