首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe the first procedure for Agrobacterium tumefaciens-mediated genetic transformation of the desiccation tolerant plant Ramonda myconi (L.) Rchb. Previously, we reported the establishment of a reliable and effective tissue culture system based on the integrated optimisation of antioxidant and growth regulator composition and the stabilisation of the pH of the culture media by means of a potassium phosphate buffer. This efficient plant regeneration via callus phase provided a basis for the optimisation of the genetic transformation in R. myconi. For gene delivery, both a standard (method A) and a modified protocol (method B) have been applied. Since the latter has previously resulted in successful transformation of another resurrection plant, Craterostigma plantagineum, an identical protocol was utilized in transformation of R. myconi, as this method may prove general for dicotyledonous resurrection plants. On this basis, physical and biochemical key variables in transformation were evaluated such as mechanical microwounding of plant explants and in vitro preinduction of vir genes. While the physical enhancement of bacterial penetration was proved to be essential for successful genetic transformation of R. myconi, an additional two-fold increase in the transformation frequency was obtained when the above physical and biochemical treatments were applied in combination. All R 0 and R 1 transgenic plants were fertile, and no morphological abnormalities were observed on the whole-plant level. Collaborator via a fellowship under the OECD Co-operative Research Programme: Biological Resource Management for Sustainable Agriculture Systems  相似文献   

2.
Centrifugation-assisted Agrobacterium-mediated transformation (CAAT) protocol, developed using banana cultivars from two economically important genomic groups (AAA and AAB) of cultivated Musa, is described. This protocol resulted in 25-65 plants/50mg of settled cell volume of embryogenic suspension cells, depending upon the Agrobacterium strain used, and gave rise to hundreds of morphologically normal, transgenic plants in two banana cultivars from the two genomic groups. Development of a highly efficient Agrobacterium-mediated transformation protocol for a recalcitrant species like banana, especially the Cavendish group (AAA) cultivars, required the identification and optimisation of the factors affecting T-DNA delivery and subsequent plant regeneration. We used male-flower-derived embryogenic cell suspensions of two banana cultivars (Cavendish and Lady Finger) and Agrobacterium strains AGL1 and LBA4404, harbouring binary vectors carrying hpt (hygromycin phosphotransferase) and gusA (-glucuronidase) or nptII (neomycin phosphotransferase) and a modified gfp (green fluorescent protein) gene in the T-DNA, to investigate and optimise T-DNA delivery and tissue culture variables. Factors evaluated included pre-induction of Agrobacterium, conditions and media used for inoculation and co-cultivation, and the presence of acetosyringone and Pluronic F68 in the co-cultivation media. One factor that led to a significant enhancement in transformation frequency was the introduction of a centrifugation step during co-cultivation. Post co-cultivation liquid-media wash and recovery step helped avoid Agrobacterium overgrowth on filters supporting suspension culture cells. Marker-gene expression and molecular analysis demonstrated that transgenes integrated stably into the banana genome. T-DNA:banana DNA boundary sequences were amplified and sequenced in order to study the integration profile.  相似文献   

3.
Summary Factors influencing the Agrobacterium-mediated transformation of both monocotyledonous and dicotyledonous plant species have been widely investigated. These factors include manipulating Agrobacterium strains and plasmids, growth conditions for vir gene induction, plant genotype, inoculation and co-culture conditions, and the selection agents and their application regime. We report here a novel physical parameter during co-culture, desiccation of plant cells or tissues post-Agrobacterium infection, which greatly enhances transfer DNA (T-DNA) delivery and increases stable transformation efficiency in wheat. Desiccation during co-culture dramatically suppressed Agrobacterium growth, which is one of the factors known to favor plant cell recovery. Osmotic and abscisic acid treatments and desiccation prior to inoculation did not have the same enhancement effect as desiccation during co-culture on T-DNA delivery in wheat. An efficient transformation protocol has been developed based on desiccation and is suitable for both paromomycin and glyphosate selection. Southern analysis showed approximately 67% of transgenic wheat plants received a single copy of the transgene.  相似文献   

4.
Plant transformation has emerged as an important tool to integrate foreign genes in the plant genome to modify the plants for desired traits. Though many techniques of plant transformation are available; getting single copy transgenic events and cost associated remains a big challenge. Thus Agrobacterium-mediated transformation remains the method of choice due to multiple advantages. In the present work a tissue culture free protocol of Agrobacterium-mediated transformation was optimized in safflower, an oil seed crop recalcitrant to transformation. As a proof of concept we selected pCAMBIA2300 gene cassette containing Arabidopsis specific delta 15 desaturase (FAD3) downstream to truncated seed specific promoter beta-conglycinin and optimized tissue culture free protocol of Agrobacterium-mediated transformation using embryos as explants. Addition of silwet L-77, sonication treatment, vacuum infiltration in infection medium and use of paper wicks in co-cultivation period increased the transformation efficiency to 19.3%. Further, success in transformation was confirmed via product accumulation in 21 independent transgenic events wherein oil in transformed seeds showed significant accumulation of alpha-linolenic acid (ALA; 18:3; n3) which is generated from linoleic acid (LA; 18:2; n3) in a FAD3 catalyzed reaction. The present protocol can be utilized to produce transgenic safflower with different desired characters.  相似文献   

5.
Although Agrobacterium-mediated transformation of sorghum has been reported, the process is rather lengthy and remains difficult, requiring some very stringent conditions to obtain transformants. We have investigated and describe the parameters related to cocultivation, culture, and regeneration that have allowed us to obtain transgenic sorghum plants in as little as 2.5 months. We observed a 2.9-fold increase in transformation efficiency when L-cysteine was included in the medium during the cocultivation step. Furthermore, the use of modified AB minimal medium, with lower phosphate levels and acidic pH, during the induction of Agrobacterium resulted in a 2.8-fold improvement in transformation efficiencies. Incorporation of an additional binary vector, harboring extra copies of virG and virC genes, in the Agrobacterium did not confer any improvements in the transformation of sorghum. Characterization of transgene activity provided some interesting results suggesting that CaMV 35S promoter activity in T0 generation is very low during the early stages of development of a transgenic sorghum plant, and is not indicative of the expression level during the later stages of development or in the next generation.  相似文献   

6.
The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.  相似文献   

7.
Turmeric (Curcuma longa L.) is a rhizomatous species belonging to the Zingiberaceae and known both for its culinary and medicinal uses. Based on an efficient tissue culture and somatic embryogenesis system that we established, we have developed a reliable Agrobacterium-mediated transformation protocol for this species. Calli derived from turmeric inflorescences were used as source tissues for transformation. Factors affecting transformation and regeneration efficiency were evaluated, including callus induction and culture conditions, Agrobacterium strains, co-cultivation conditions, selection agent sensitivity and bacterial elimination, and transformant selection. Optimized transformation conditions were identified, including: use of Agrobacterium strain EHA105 with plasmid pBISN1 for infection; a modified B5 medium system for callus induction, subculture, co-culture and selection; and MS media for transformant regeneration. Transgenic plants and their vegetative (clonal) progeny stably expressed the transgene as indicated by GUS assay, PCR and Southern blot analysis. In addition, a transient gene expression system was developed that involves Agrobacterium infiltration of young turmeric leaves followed by in vitro regeneration of plantlets. This approach established that a MADS-box-GFP fusion protein was localized to the nucleus of turmeric cells. The stable transformation and transient expression systems described herein offer opportunities for assaying gene function in turmeric and for improving turmeric properties.  相似文献   

8.
The limiting step in the transformation protocol for sunflower (Helianthus annuus L.) is the induction of adventitious shoots from embryonic axes. This specific element of an established protocol was addressed in the present study. The explants were bombarded with tungsten particles coated with a construct harbouring the ipt gene of Agrobacterium vitis, involved in the de novo synthesis of cytokinins, in addition to the usual co-culture with an Agrobacterium strain harbouring the gene of interest, i.e. the uidA gene. The proportion of GUS-expressing shoots was increased in the bombarded samples. The expression of the ipt gene was transient and the construct was not incorporated in the regenerated shoots. After introduction of this additional step in the transformation protocol, the rate of recovery of transgenic shoots after Agrobacterium-mediated transformation was 6.2%, corresponding to approximately 3 times the control value obtained in experiments without the additional bombardment step or where explants were bombarded with naked particles.  相似文献   

9.
A critical step in the development of a reproducible Agrobacterium tumefaciens mediated transformation system for a recalcitrant species, such as pearl millet, is the establishment of optimal conditions for efficient T-DNA delivery into target tissue from which plants can be regenerated. A multiple shoot regeneration system, without any intervening callus phase, was developed and used as a tissue culture system for Agrobacterium-mediated transformation. Agrobacterium super virulent strain EHA105 harboring the binary vector pCAMBIA 1301 which contains a T-DNA incorporating the hygromycin phosphotransferase (hpt II) and β-glucuronidase (GUS) genes was used to investigate and optimize T-DNA delivery into shoot apices of pearl millet. A number of factors produced significant differences in T-DNA delivery; these included optical density, inoculation duration, co-cultivation time, acetosyringone concentration in co-cultivation medium and vacuum infiltration assisted inoculation. The highest transformation frequency of 5.79% was obtained when the shoot apex explants were infected for 30 min with Agrobacterium O.D.600 = 1.2 under a negative pressure of 0.5 × 105 Pa and co-cultivated for 3 days in medium containing 400 μM acetosyringone. Histochemical GUS assay and polymerase chain reaction (PCR) analysis confirmed the presence of the GUS gene in putative transgenic plants, while stable integration of the GUS gene into the plant genome was confirmed by Southern analysis. This is the first report showing reproducible, rapid and efficient Agrobacterium-mediated transformation of shoot apices and the subsequent regeneration of transgenic plants in pearl millet. The developed protocol will facilitate the insertion of desirable genes of useful traits into pearl millet.  相似文献   

10.
Summary Fertile transgenic plants of the annual pasture legume Medicago truncatula were obtained by Agrobacterium-mediated transformation, utilising a disarmed Ti plasmid and a binary vector containing the kanamycin resistance gene under the control of the cauliflower mosaic virus 35S promoter. Factors contributing to the result included an improved plant regeneration protocol and the use of explants from a plant identified as possessing high regeneration capability from tissue culture. Genes present on the T-DNA of the Ri plasmid had a negative effect on somatic embryogenesis. Only tissue inoculated with Agrobacterium strains containing a disarmed Ti plasmid lacking the T-DNA region or a Ri plasmid with an inactivated rol A gene regenerated transgenic plants. Fertile transgenic plants were only obtained with disarmed A. tumefaciens, and the introduced NPT II gene was transmitted to R1 progeny.Abbreviations BAP 6-benzylaminopurine - NAA 1-naphthaleneacetic acid - NPT neomycin phosphotransferase  相似文献   

11.
D. Li  W. Shi  X. Deng 《Plant cell reports》2002,21(2):153-156
Ponkan (Citrus reticulata Blanco), one of the most important commercial cultivars of mandarin, is very seedy. In this study, the chimeric ribonuclease gene (barnase) driven by an anther tapetum-specific promoter (pTA29) was introduced into embryogenic callus of Ponkan by Agrobacterium-mediated transformation using the bar gene as a selectable marker. In contrast to previous reports, embryogenic calluses were used as the explant for Agrobacterium infection and transgenic plant regeneration. Selection of transformed callus was accomplished using basta. After 3 days of co-culture, calluses were transferred to MT medium with 50 mg/l basta and 400 mg/l cefotaxime. Resistant calluses were recovered and proliferated after three to four subcultures and then regenerated plantlets. A total of 52 resistant plants were recovered, of which 43 were verified to be transformants by polymerase chain reaction amplification of a fragment of the transgene. Southern hybridization of seven randomly selected transformed plants further confirmed their transgenic nature. The potential of this strategy for breeding citrus seedless types is discussed.  相似文献   

12.
. Agrobacterium-mediated transformation is highly dependent upon competency of the target plant tissues. It is important to develop the capacity of transformed cells to include cell proliferation and differentiation. A system which results in cell proliferation and differentiation only of transformed cells is highly desirable for plant transformation. We report here a new GST-MAT vector system (MATIMH), in which the ipt gene combined with iaaM/H genes was used as the selectable marker gene and the GST-II promoter was used as the promoter of the R gene in a site-specific recombination system. In tobacco transformation, the combination of the ipt gene and the iaaM/H genes can result in the production of both auxin and cytokinin in transformed tissues and induce regeneration of transgenic shoots exhibiting an ipt-shooty phenotype more efficiently than the ipt gene alone. When we transformed 20 tobacco leaf discs with the MATIMH vector, marker-free transgenic plants were produced from five (41.6%) out of 12 ipt-shooty lines. These results indicated that the combination of the iaaM/H genes and the ipt gene can more efficiently produce both transgenic plants and marker-free transgenic plants.  相似文献   

13.
For successful transformation of a plant by Agrobacterium tumefaciens it is essential that the explant used in cocultivation has the ability to induce Agrobacterium tumour-inducing (Ti) plasmid virulence (vir) genes. Here we report a significant variation in different tissues of Indica rice (Oryza sativa L. cv. Co43) in their ability to induce Agrobacterium tumefaciens vir genes and T-strand generation, using explants preincubated in liquid Murashige and Skoog (MS) medium. An analysis of rice leaf segments revealed that they neither induced vir genes nor inhibited vir gene induction. Of different parts of rice plants of different ages analysed only scutellum from four-day old rice seedlings induced vir genes and generation of T-strands. We observed that the physical presence of preincubated scutella is required for vir gene induction. Conditioned medium from which preincubated scutella were removed did not induce the vir genes. Scutellum-derived calli, cultured for 25 days on medium containing 2,4-D, also induced virE to an appreciable level. These results suggest that scutellum and scutellum-derived calli may be the most susceptible tissues of rice for Agrobacterium-mediated transformation.  相似文献   

14.
Induction of Agrobacterium vir genes is one of the basic requirements for T-DNA transfer and integration into plant genome. Here we study the vir gene induction by various explant types of eggplant in order to develop a transformation protocol with improved efficiency using binary vector constructs - harbouring a hygromycin phosphotransferase gene (hpt) as a selection marker and a gfp:gus fusion gene as a reporter. A protocol for efficient Agrobacterium-mediated transformation of eggplant (Solanum melongena L cv Pusa Purple Long) has been developed by optimizing factors. Leaf, cotyledon and hypocotyl explants were tested for their ability to induce Agrobacterium vir-genes using a VirE:lacZ fusion construct and were shown to be poor inducers of the same. Addition of 100 µM acetosyringone during infection and co-cultivation steps of transformation could enhance the vir gene induction as well as a 2–3 fold increase in transformation frequency. Transformed explants showed the expression of reporter genes gus and gfp. The transgenics were analysed by peR and Southern blot hybridization, and were shown to have T-DNA integrated into their genome. The data suggest that eggplant is a relatively poor inducer of Agrobacterium vir genes, probably due to minimal phenolic production, and by modulating vir gene induction using phenolics like acetosyringone eggplant transformation can be improved.  相似文献   

15.
Summary This study reports an Agrobacterium-mediated transformation of green-colored cotton (Gossypium hirsutum L.). A tissue culture procedure was optimized to induce callus formation from hypocotyl explants and subsequent differentiation into the embryogenic type. Callus formation could be induced by growing explants on Murashige and Skoog medium containing 2,4-dichlorophenoxyacetic acid and kinetin. Among the four genotypes studied, embryogenic calli and plant regeneration were observed only in var. G9803. Agrobacterium-mediated transformation of G9803 with the fiber-specific expansin gene GhExpl was achieved based on the establishment of these tissue culture methods. A total of 32 individual regenerants resistant to kanamycin were generated within 7 mo., with a transformation frequency of 17.8%. Transformation was confirmed by Southern blot analysis and RT-PCR. These results represent the first step towards genetic manipulation of the colors and fiber quality of green-colored cottons by biotechnology. These authors contributed equally to this work  相似文献   

16.
Identification of beta-lactam antibiotics that have negligible effects on plant regeneration is a critical step towards the establishment of a reliable Agrobacterium-mediated transformation protocol for perennial trees. In the present report, we have evaluated the effects of the novel beta-lactam antibiotics meropenem and timentin on plant regeneration of a perennial woody fruit plant, Citrus sinensis, in comparison with the commonly used beta-lactam cefotaxime. It was observed that, in contrast to cefotaxime, meropenem and timentin had a positive or no detrimental effect on the shoot regeneration from epicotyl explants. Residual effects of the beta-lactams from shoot regeneration medium also affected the subsequent ability of the roots to elongate. The addition of meropenem and/or timentin in the rooting medium mostly improved or did not affect the rooting ability of the adventitious shoots. These data indicated that meropenem and timentin can positively replace cefotaxime in Agrobacterium-mediated transformation of C. sinensis.  相似文献   

17.
A protocol for producing transgenic radish (Raphanus sativus) was obtained by using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation. The Agrobacterium strain LBA4404 contained the binary vector pBI121-LEA (late embyogenesis abundant), which carried a Group 3 LEA gene, from Brassica napus. Among six combinations, Agrobacterium-mediated transformation assisted by a combination of 5-min sonication with 5-min vacuum infiltration resulted in the highest transformation frequency. The existence, integration and expression of transferred LEA gene in transgenic T1 plants were confirmed by PCR, genomic Southern and Western blot analysis. Transgenic radish demonstrated better growth performance than non-transformed control plants under osmotic and salt stress conditions. Accumulation of Group 3 LEA protein in the vegetative tissue of transgenic radish conferred increased tolerance to water deficit and salt stress.  相似文献   

18.
An efficient gene transfer system without tissue culture steps was developed for kidney bean by using sonication and vacuum infiltration assisted, Agrobacterium-mediated transformation. Transgenic kidney bean with a group 3 lea (late embryogenesis abundant) protein gene from Brassica napus was produced through this approach. Among 18 combinations of transformation methods, Agrobacterium-mediated transformation combined with 5 min sonication and 5 min vacuum infiltration turned to be optimal, resulting in the highest transformation efficiency. Transgenic kidney bean plants demonstrated enhanced growth ability under salt and water deficit stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by drought stress. Transgenic lines with high level of lea gene expression showed higher stress tolerance than lines with lower expression level. Stress tolerance of transgenic kidney bean correlated much better with lea gene expression levels than with gene integration results. There is no prior report on the production of transgenic kidney bean using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation.  相似文献   

19.
A tissue culture system for different germplasms of indica rice   总被引:4,自引:0,他引:4  
Ge X  Chu Z  Lin Y  Wang S 《Plant cell reports》2006,25(5):392-402
Agrobacterium-mediated transformation of indica rice has been manipulated in only a limited number of cultivars because the majority of indica varieties are recalcitrant to in vitro response. Establishment of a highly efficient and widely used tissue culture system for indica rice will accelerate the application of transformation technology in breeding programs and the study of the functions of indica-specific genes. By manipulating plant growth regulators, organic components and salts within the culture media, we established two media for callus induction and subculture, respectively, in tissue culture of indica rice. The modified media could guarantee the production and proliferation of a great number of embryogenic calli with high regeneration capacity from mature seeds representing different indica rice germplasms. The calli obtained from this system should be ideal material for Agrobacterium-mediated transformation. The results suggest that this optimized tissue culture system will be widely applicable for the tissue culture of indica varieties. Electronic Supplementary Material Supplementary material is available for this article at The first two authors contributed equally to this work.  相似文献   

20.
We have developed anAgrobacterium-mediated transformation system, using tobacco cell suspensions, that permits evaluation of factors affecting transformation within seven days of co-cultivation. Tobacco cell transformation was determined by monitoring -glucuronidase (GUS) activity detected in plant cell extracts. The use of a chimeric gene construct, 35S-GUS/INT, containing a portable intron in theuidA reading frame, assured only plant-specific GUS expression. During the co-cultivation period, induction of the bacterialvir-region was monitored using a heterologous gene construct composed of avirB promoter fragment from pTiC58 fused to the chloramphenicol acetyltranferase (CAT) gene ofTn9. Tobacco cell transformants were confirmed by antibiotic selection of transformed plant cells and by X-Gluc staining. Maximum transformation was obtained when plant suspension cultures were growing rapidly which also was coincidental with elevated levels of bacterialvir-region expression. One week after co-cultivation, the transformed cultures exhibited a stable pattern of GUS activity which remained constant without antibiotic selection. The system was used to compare the virulence of a number ofAgrobacterium strains. GUS activity of plant cells co-cultivated with a strain containing a cointegrate plasmid was 3-fold higher than that of one with a binary configuration of the T-DNA. When the co-cultivatingAgrobacterium strain also carried the plasmid used to monitorvir induction, the frequency of transformation was reduced by as much, as 97%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号