首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
目的:通过体外诱导分化实验,探讨人羊膜上皮细胞(hAECs)向胰岛素分泌细胞(ISCs)分化的能力。方法:采用胰蛋白酶消化法从人羊膜组织分离提取hAECs,用流式细胞仪和免疫细胞化学法进行鉴定。取第3代hAECs在含尼克酰胺和N2补充物的无血清培养基中诱导培养,分别于诱导不同时间采用免疫细胞化学法检测胰岛素和β2微球蛋白的表达,采用放射免疫法检测上清液中胰岛素含量,采用RT-PCR检测胰岛素mRNA和胰十二指肠同源异型盒因子-1(PDX-1)mRNA的表达。结果:①hAECs高表达CD29、CD73、CD166和CK19;②hAECs诱导组第7、142、1天胰岛素阳性细胞百分率分别为74.00%±1.73%、75.33%±1.15%和75.67%±0.58%,而对照组未见胰岛素阳性细胞;③hAECs诱导组第7、14、21天培养物上清液中胰岛素含量分别达(328.47±3.22)μIU/ml、(332.26±1.22)μIU/ml和(329.68±2.57)μIU/ml,均显著高于对照组(P均<0.01);④hAECs诱导前后均有PDX-1 mRNA和β2微球蛋白表达,胰岛素mRNA表达仅见于诱导组。结论:hAECs能分化为ISCs,在Ⅰ型糖尿病细胞移植治疗方面具有潜在应用前景。  相似文献   

2.
糖尿病是严重危害人类健康的一类疾病,注射胰岛素和胰岛移植虽能用于治疗糖尿病,但都存在一定的局限性。大量研究表明,间充质干细胞(mesenchymal stem cell,MSC)可以在化学以及生物因子的作用下,或通过基因转染的方式在体外被诱导分化为胰岛素分泌细胞,且移植后对糖尿病鼠模型有一定降血糖效果,因而成为糖尿病治疗领域的研究热点。文章综述了不同来源的MSC诱导分化为胰岛分泌细胞(insulin—producing cells,IPC)的方法及诱导分化后用于治疗1型糖尿病的研究进展。  相似文献   

3.
体外化学诱导人骨髓间充质干细胞分化为心肌样细胞   总被引:7,自引:0,他引:7  
To investigate the potential of adult mesenchymal stem cells (hMSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure of 5-azacytidine in vitro. A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073 g/mL Percoll and cultured in the right cell culturing medium as previously described. The phonotypes of hMSCs were identified by flow cytometry. The stem cells were cultured in cell culture medium (as control) and medium mixed with 5-azacytidine (5-aza, 3, 5, 10 micromol/L) (n=5, respectively) for cellular differentiation. We examined respectively with immunohischemistry at 21 days of inducement on desmin, cardiac-specific cardiac troponin I (cTnI), GATA4 & connexin43. The ultrastructures of induced cells were examined by transmission electron microscope. The results indicated that the hMSCs showed a fibroblast-like morphology with vortex distribution in their peak propagation, and express high level of CD44 but negative for CD34 and CD45. 20%-30% cells grown after 5, 10 microl/L 5-aza treatment connected with adjoining cells and coalesced into myotube structures after 14 days. After 21 days of culturing, immunohistochemistry revealed expression of desmin, GATA4, cTnI and connexin43 in 5, 10 micromol/L showed positive, but no cardiac specific protein were found in neither 3 micromol/L nor in control group. The ratio of cTnI positive stained cells in 10 micromol/L group were higher than that in 5 micromol/L group (65.3+/-4.7% vs 48.2+/-5.4%, p<0.05). Electron microscopy revealed myofilaments were formed. The results indicated that purified hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration.  相似文献   

4.
为探讨用单纯生物学制剂诱导人脐带间充质干细胞(mesenchymal stem cells derived from human umbilical cord,hUC-MSCs)向胰岛素分泌细胞分化的可行性,本研究用胶原酶Ⅱ、胰蛋白酶次序消化及两步离心法从人胎儿完整脐带中分离、纯化出hUC-MSCs;用表皮生长因子、碱性成纤维生长因子、银杏提取液和高糖培养基IMDM诱导hUC-MSCs向胰岛素分泌细胞分化。在hUC-MSCs诱导前后,用倒置显微镜观察其形态变化,RT-PCR检测其胰岛相关基因的表达;双硫腙染色鉴定胰岛样细胞团(islet-like clusters,ILCs);细胞免疫荧光染色检测ILCs中PDX-1和免疫活性胰岛素(immunoreactive insulin,IRI)的表达;化学发光法检测ILCs的IRI分泌量;Western blot鉴定IRI的性质。结果显示:纯化的hUC-MSCs呈间充质干细胞特有的形态特征:长梭形,平行或螺旋形排列;在上述单纯生物学制剂的诱导下,hUC-MSCs逐渐变圆并聚集成团;在25cm2培养瓶的细胞生长面可见上百个ILCs;ILCs表达胰岛特异性基因pdx-1、insulin;ILCs呈PDX-1和IRI免疫染色阳性反应,双硫腙染色呈阳性;ILCs可分泌IRI,但多为胰岛素原(proinsulin,PI)。以上结果提示,用表皮生长因子、碱性成纤维生长因子、银杏提取液和高糖培养基IMDM可诱导hUC-MSCs快速分化为胰岛素分泌细胞,但ILCs功能不够成熟,难以产生足量真胰岛素。  相似文献   

5.
近年来,间充质干细胞(mesenchymal stem cell,MSC)已成为干细胞领域的研究热点,其不仅支持造血系统,还可在特定的培养条件下向多种组织细胞分化。人脐带和胎盘来源的MSC取材容易,较骨髓间充质干细胞有更广泛的应用前景。本文就含有特定生长因子的培养基诱导人脐带MSC和人胎盘MSC定向分化的研究进展作一简要的综述。  相似文献   

6.
人羊膜上皮细胞和人羊膜间充质干细胞存在于人羊膜组织中,统称为人羊膜细胞.人羊膜细胞可塑性强,具有多向分化的潜能;并且免疫原性低,移植不会发生免疫排斥反应,成为近年来研究的热点.人羊膜上皮细胞和人羊膜间充质干细胞的生物学特性使其符合干细胞药物产品的标准,将其应用于诸多疾病的治疗,如心肌梗死、脑梗死和肾损伤等,均已取得良好...  相似文献   

7.
体外化学诱导人骨髓间充质干细胞分化为心肌样细胞   总被引:1,自引:0,他引:1  
为了探讨人骨髓间充质干细胞(MSCs)的体外培养及化学诱导向心肌细胞分化的过程及条件,我们用1.073g/mL密度梯度离心法分离健康人骨髓单个核细胞,经骨髓间充质干细胞培养基传代培养后用流式细胞仪检测细胞表面抗原,在完全培养基中分别加入3、5、10μmol/L的5氮胞苷(每组n=5)进行化学诱导分化,阴性对照组采用完全培养基培养,诱导后21天细胞爬片免疫荧光法鉴定,透射电镜观察细胞超微结构。结果显示人MSCs为形态均一的梭形细胞,生长旺盛时呈旋涡样分布,流式细胞仪检测细胞表面CD44阳性,CD34、CD45阴性;5、10μmol/L的5氮胞苷进行化学诱导后细胞形态变长,诱导后14天时20%-30%细胞融合形成多核肌管样结构,3μmol/L组MSCs未出现肌管结构,诱导后21天5、10μmol/L组MSCs中desmin、心肌早期转录因子GATA4、心肌特异性cTnI及闰盘蛋白connexin43的表达阳性,10μmol/L组cTnI阳性染色细胞数目(65.3±4.7%)高于5μmol/L诱导组(48.2±5.4%)(p<0.05);3μmol/L组及阴性对照组无心肌特异性蛋白的表达。细胞诱导后28天透射电镜下可见肌丝形成。本实验说明,人MSCs在体外经化学诱导可分化为心肌样细胞,而且5-氮胞苷对于心肌相关蛋白的表达呈浓度依赖性正相关。  相似文献   

8.
胰腺或胰岛细胞移植是目前治疗Ⅰ型糖尿病和部分Ⅱ型糖尿病效果最理想的方法,但因来源组织短缺及需要终生服用免疫抑制剂等问题限制了它的广泛应用.利用胰腺或胰腺外的多能干细胞产生胰岛样细胞有望克服上述问题而用于治疗糖尿病.本文就将干细胞诱导分化为胰岛样细胞中所用的重要的转录因子和可溶性诱导因子及其作用以及胰岛素分泌细胞的来源做一综述.  相似文献   

9.
自然存在的间充质干细胞数量少,限制了其研究应用。依靠自主发明的间充质干细胞过滤分离器,分离制备了人羊膜间充质干细胞,并对制备的干细胞进行了三维培养扩增。结果表明,制备的干细胞形态长势良好,并能诱导分化为类胰岛样组织。与常规方法相比,干细胞收获率提高了8倍以上,且细胞活性状态良好。间充质干细胞过滤分离器可以批量制备高质量的各种间充质干细胞,有利于高效率地建设各种间充质干细胞库,以促进间充质干细胞的研究应用。  相似文献   

10.
I型糖尿病是胰岛β细胞破环的自身免疫性疾病.I型糖尿病胰岛移植是治疗I型糖尿病的有效方法.胚胎干细胞能够分化为包括胰岛素分泌细胞在内的多种细胞类型.胚胎干细胞是治疗I型糖尿病的潜在来源.综述了近年来胚胎干细胞分化为胰岛素分泌细胞的研究进展,主要阐述了胰腺发育的转录因子和不同的分化方法.  相似文献   

11.
12.
Pancreatic progenitor cells represent both a potential source of transplantable islets for the treatment of diabetes and a valuable instrument for the investigation of the tumorigenesis of pancreatic carcinoma. It has been reported that pancreatic ductal cells of adults have the characteristics of pancreatic progenitors, but whether these cells can generate endocrine cells requires verification. Here, the differentiation of daughter cells of CD24(-) pancreatic ductal cells into insulin-secreting cells in vitro is reported. Crude pancreatic ductal cells were first obtained from adult mice by gradient centrifugation, and then the CD24(-) cells were isolated with a fluorescence-activated cell sorter. The isolated cells were cultured in serum-containing medium at clonal density to form epithelial colonies (ECs). The ECs were then stimulated with basic fibroblast growth factor (bFGF). After 72 h, insulin-secreting cells were observed in the ECs. These results indicate that the daughter cells of CD24(-) pancreatic ductal cells can differentiate into insulin-secreting cells in vitro when stimulated with exogenous bFGF. Therefore, CD24(-) pancreatic ductal cells have the potential to be pancreatic progenitor cells.  相似文献   

13.
为了探讨川芎嗪体外诱导小鼠骨髓间质干细胞(BMSCs)分化为神经元样细胞的作用,以小鼠骨髓间充质干细胞为研究对象,实验分为空白对照组、β-巯基乙醇(BME)阳性对照组和川芎嗪诱导组。采用荧光免疫化学和Western blot方法,分别检测神经干细胞巢蛋白(nestin)和经元特异性烯醇化酶(NSE)的表达;RT-PCR检测诱导不同时间对神经细胞相关基因Nestin、NSE、β-微管蛋白III(β-Tubulin III)和核受体相关因子-1(Nurr1)mRNA表达的影响。结果显示川芎嗪诱导间充质干细胞24 h后,细胞形态发生显著改变,细胞突起形成且数目不等,形成神经元样细胞。细胞死亡率低于β-巯基乙醇诱导组。免疫荧光化学法和western blot结果显示:川芎嗪诱导后的细胞nes-tin和NSE蛋白表达呈阳性,且表达丰度显著高于β-巯基乙醇诱导组。川芎嗪作用不同时间的BMSCs表达神经细胞相关基因Nestin、β-Tubulin III、NSE和Nurrl。结果表明川芎嗪能定向诱导小鼠骨髓间充质干细胞分化为神经元样细胞,是较理想的诱导剂。  相似文献   

14.
15.
16.
Human amniotic transplantation has been proposed to improve the therapeutic efficacy of intrauterine adhesions (IUAs). Human amniotic mesenchymal stem stromal cells (hAMSCs) can differentiate into multiple tissue types. This study aimed to investigate the mechanism by which hAMSCs transplantation promotes endometrial regeneration. The rat models with IUA were established through mechanical and infective methods, and PKH26-labeled hAMSCs were transplanted through the tail vein (combined with/without estrogen). Under three different conditions, hAMSCs differentiated into endometrium-like cells. HE and Mason staining assays, and immunohistochemistry were used to compare the changes in rat models treated with hAMSCs and/or estrogen transplantation. To define the induction of hAMSCs to endometrium-like cells in vitro, an induction medium (cytokines, estrogen) was used to investigate the differentiation of hAMSCs into endometrium-like cells. qRT-polymerase chain reaction (PCR) and western blotting were performed to detect the differentiation of hAMSCs into endometrium-like cells. A greater number of glands, fewer endometrial fibrotic areas, and stronger expression of vascular endothelial growth factor and cytokeratin in the combined group (hAMSCs transplantation combined with estrogen) than in the other treatment groups were observed. hAMSCs could be induced into endometrium-like cells by cytokine treatment (TGF-β1, EGF, and PDGF-BB). Transplantation of hAMSCs is an effective alternative for endometrial regeneration after injury in rats. The differentiation protocol for hAMSCs will be useful for further studies on human endometrial regeneration.  相似文献   

17.
Recent studies have demonstrated that mesenchymal stem cells could differentiate into germ cells under appropriate conditions. We sought to determine whether human umbilical cord Wharton's jelly‐derived mesenchymal stem cells (HUMSCs) could form germ cells in vitro. HUMSCs were induced to differentiate into germ cells in all‐trans retinoic acid, testosterone and testicular‐cell‐conditioned medium prepared from newborn male mouse testes. HUMSCs formed “tadpole‐like” cells after induction with different reagents and showed both mRNA and protein expression of germ‐cell‐specific markers Oct4 (POUF5), Ckit, CD49f (α6), Stella (DDPA3), and Vasa (DDX4). Our results may provide a new route for reproductive therapy involving HUMSCs and a novel in vitro model to investigate the molecular mechanisms that regulate the development of the mammalian germ lineage. J. Cell. Biochem. 109: 747–754, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
There is increasing evidence that human mesenchymal stem cells (hMSCs) can be a valuable, transplantable source of hepatocytes. Most of the hMSCs preparations used in these studies were likely heterogeneous cell populations, isolated by adherence to plastic surfaces or by density gradient centrifugation. Therefore, the participation of other unknown trace cell populations cannot be rigorously discounted. Here we report the isolation and establishment of a cloned human MSC line (chMSC) from human bone marrow primary culture, through which we confirmed the hepatic differentiation capability of authentic hMSCs. chMSCs expressed markers of mesenchymal cells, but not markers of hematopoietic stem cells. In vitro, chMSCs can differentiate into either mesenchymal cells or cells exhibiting hepatocyte‐like phenotypes. When transplanted intrasplentically into carbon tetrachloride‐injured livers of SCID mice, EGFP‐tagged chMSCs engrafted into the host liver parenchyma, exhibited typical hepatocyte morphology, form a three‐dimensional architecture, and differentiate into hepatocyte‐like cells expressing human albumin and α‐1‐anti‐trypsin. By confocal microscopy, ultrafine intercellular nanotubular structures were visible between adjacent transplanted and host hepatocytes. We postulate that these structures may assist in the phenotype conversion of chMSCs, possibly by exchange of cytoplasmic components between native hepatocytes and transplanted cells. Thus, a clonal pure population of hMSCs, which can be expanded in culture, may have potential as a cellular source for substitution damaged cells in hepatic injury. J. Cell. Biochem. 108: 693–704, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
As rice bran contains various nutrients and other proteins of which a part has biological effects on animal cells, we tested the effect of rice bran extract on rat mesenchymal stem cells (rMSCs) obtained from bone marrow. These rMSCs are pluripotent and can be readily induced to differentiate into a number of cell types, including bone and cartilage. rMSC was aggregated by culturing in serum-free condition with rice bran extract, but was not aggregated by culturing in serum-free condition or in serum-containing medium. Moreover, the longer aggregates of rMSCs were cultured in serum-free condition with rice bran extract, the more the aggregates grew. After two passages in serum-free conditions, rMSCs lost their potency for differentiation into osteogenic cells; however, the addition of rice bran extract to serum-free medium successfully prevented the loss of this ability for differentiation. In addition, MSC makers CD105 and CD166 gene expression in serum-free condition with rice barn extract corresponded to these expressions in serum-containing medium. This result suggests that certain factors in rice bran could be bioactive and contribute toward retaining the ability of MSCs to differentiate into osteogenic cells after passaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号