首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Affinity isolation of protein serine/threonine phosphatases on the immobilized phosphatase inhibitor microcystin-LR identified histone deacetylase 1(HDAC1), HDAC6, and HDAC10 as novel components of cellular phosphatase complexes. Other HDACs, specifically HDAC2, -3, -4, and -5, were excluded from such complexes. In vitro biochemical studies showed that recombinant HDAC6, but not HDAC4, bound directly to the protein phosphatase (PP)1 catalytic subunit. No association was observed between HDAC6 and PP2A, another major protein phosphatase. PP1 binding was mapped to the second catalytic domain and adjacent C-terminal sequences in HDAC6, and treatment of cells with trichostatin A (TSA) disrupted endogenous HDAC6.PP1 complexes. Consistent with the inhibition of tubulin deactylase activity of HDAC6, TSA enhanced cellular tubulin acetylation, and acetylated tubulin was present in the PP1 complexes from TSA-treated cells. Trapoxin B, a weak HDAC6 inhibitor, and calyculin A, a cell-permeable phosphatase inhibitor, had no effect on the stability of the HDAC6.PP1 complexes or on tubulin acetylation. Mutations that inactivated HDAC6 prevented its incorporation into cellular PP1 complexes and suggested that when bound together both enzymes were active. Interestingly, TSA disrupted all the cellular HDAC.phosphatase complexes analyzed. This study provided new insight into the mechanism by which HDAC inhibitors elicited coordinate changes in cellular protein phosphorylation and acetylation and suggested that changes in these protein modifications at multiple subcellular sites may contribute to the known ability of HDAC inhibitors to suppress cell growth and transformation.  相似文献   

3.
4.
5.
6.
7.
Aberrant expression of histone deacetylases (HDACs) is associated with carcinogenesis. Some HDAC inhibitors are widely considered as promising anticancer therapeutics. A major obstacle for development of HDAC inhibitors as highly safe and effective anticancer therapeutics is that our current knowledge on the contributions of different HDACs in various cancer types remains scant. Here we report that the expression level of HDAC10 was significantly lower in patients exhibiting lymph node metastasis compared with that in patients lacking lymph node metastasis in human cervical squamous cell carcinoma. Forced expression of HDAC10 in cervical cancer cells significantly inhibited cell motility and invasiveness in vitro and metastasis in vivo. Mechanistically, HDAC10 suppresses expression of matrix metalloproteinase (MMP) 2 and 9 genes, which are known to be critical for cancer cell invasion and metastasis. At the molecular level, HDAC10 binds to MMP2 and -9 promoter regions, reduces the histone acetylation level, and inhibits the binding of RNA polymerase II to these regions. Furthermore, an HDAC10 mutant lacking histone deacetylase activity failed to mimic the functions of full-length protein. These results identify a critical role of HDAC10 in suppression of cervical cancer metastasis, underscoring the importance of developing isoform-specific HDAC inhibitors for treatment of certain cancer types such as cervical squamous cell carcinoma.  相似文献   

8.
9.
Histone deacetylase (EC 3.5.1.98 – HDAC) is an amidohydrolase involved in deacetylating the histone lysine residues for chromatin remodeling and thus plays a vital role in the epigenetic regulation of gene expression. Due to its aberrant activity and over expression in several forms of cancer, HDAC is considered as a potential anticancer drug target. HDAC inhibitors alter the acetylation status of histone and non-histone proteins to regulate various cellular events such as cell survival, differentiation and apoptosis in tumor cells and thus exhibit anticancer activity. Till date, four drugs, namely Vorinostat (SAHA), Romidepsin (FK-228), Belinostat (PXD-101) and Panobinostat (LBH-589) have been granted FDA approval for cancer and several HDAC inhibitors are currently in various phases of clinical trials, either as monotherapy and/or in combination with existing/novel anticancer agents. Regardless of this, today scientific efforts have fortified the quest for newer and novel HDAC inhibitors that show isoform selectivity. This review focuses on the chemistry of the molecules of two classes of HDAC inhibitors, namely short chain fatty acids and hydroxamic acids, investigated so far as novel therapeutic agents for cancer.  相似文献   

10.
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.  相似文献   

11.
12.
Evasion of apoptosis represents a key mechanism leading to treatment resistance of human cancers. Abnormal regulation of chromatin remodeling has been implied in tumorigenesis as well as treatment resistance. Acetylation of histones represents one of the key posttranslational modifications that contribute to the regulation of chromatin remodeling. Histone acetylation is governed by the balance between enzymes that put acetyl groups on histone tails or, alternatively, remove them. Since a disturbed regulation of histone acetylation plays an important role in cancer formation and progression, a variety of histone deacetylase (HDAC) inhibitors have been developed in recent years to target aberrant HDAC activity. HDAC inhibitors also represent a promising strategy to lower the threshold of cancer cells for apoptosis induction. For example, synergistic induction of apoptosis has been documented for the concomitant use of HDAC inhibitors together with the death receptor ligand TRAIL in a panel of human cancers. Understanding the molecular mechanism that mediates this synergistic drug interaction will be critical to further optimize this approach in order to successfully translate it into a clinical setting.  相似文献   

13.
14.
Deleted in liver cancer (DLC1), a tumor suppressor gene in multiple cancers, is recurrently down regulated or inactivated by epigenetic mechanisms in primary prostate carcinomas (PCAs). In this study the methylation and acetylation profile of the DLC1 promoter region was examined in three PCA cell lines with low or undetectable DLC1 expression: LNCaP, its derivative C4-2B-2, and 22Rv1. Two histone deacetylase inhibitors (HDAC), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) induced histone acetylation of the DLC1 promoter in all three lines. DLC1 promoter methylation and deacetylation were detected in LNCaP and C4-2B-2 cells while in 22Rv1 cells DLC1 is silenced by deacetylation. Treatment with SAHA or TSA efficiently increased DLC1 expression in all lines, particularly in 22Rv1 cells, and activated the DLC1 promoter through the same Sp1 sites. The 22Rv1 cell line was selected to evaluate the efficacy of combined DLC1 transduction and SAHA treatment on tumor growth in athymic mice. Individually, DLC1 transduction and SAHA exposure reduced the tumor size by 75-80% compared to controls and in combination almost completely inhibited tumor growth. The antitumor effect was associated with the induction of apoptosis and inhibition of RhoA activity. SAHA alone significantly reduced RhoA activity, showing that this RhoGTPase is a target for SAHA. These results, obtained with a reliable preclinical in vivo test, predict that combined therapeutic agents targeting the pathways governing DLC1 function and HDAC inhibitors may be beneficial in management of prostate cancer.  相似文献   

15.
16.
17.
L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg''s theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21cip1 gene, mRNA and protein in cancer cells but not p27kip1; (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21cip1 gene but not p27kip1 detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.  相似文献   

18.
19.
Autophagy is an evolutionary conserved process that recycles cellular materials in times of nutrient restriction to maintain viability. In cancer therapeutics, the role of autophagy in response to multi-kinase inhibitors, alone or when combined with histone deacetylase (HDAC) inhibitors acts, generally, to facilitate the killing of tumor cells. Furthermore, the formation of autophagosomes and subsequent degradation of their contents can reduce the expression of HDAC proteins themselves as well as of other signaling regulatory molecules such as protein chaperones and mutated RAS proteins. Reduced levels of HDAC6 causes the acetylation and inactivation of heat shock protein 90, and, together with reduced expression of the chaperones HSP70 and GRP78, generates a strong endoplasmic reticulum (ER) stress response. Prolonged intense ER stress signaling causes tumor cell death. Reduced expression of HDACs 1, 2 and 3 causes the levels of programed death ligand 1 (PD-L1) to decline and the expression of Class I MHCA to increase which correlates with elevated immunogenicity of the tumor cells in vivo. This review will specifically focus on the downstream implications that result from autophagic-degradation of HDACs, RAS and protein chaperones.  相似文献   

20.
Wang H  Zhou W  Zheng Z  Zhang P  Tu B  He Q  Zhu WG 《DNA Repair》2012,11(2):146-156
Histone deacetylase (HDAC) inhibitors have been proven to be effective therapeutic agents to kill cancer cells through inhibiting HDAC activity or altering the structure of chromatin. As a potent HDAC inhibitor, depsipeptide not only modulates histone deacetylation but also activates non-histone protein p53 to inhibit cancer cell growth. However, the mechanism of depsipeptide-induced p53 transactivity remains unknown. Here, we show that depsipeptide causes DNA damage through induction of reactive oxygen species (ROS) generation, as demonstrated by a comet assay and by detection of the phosphorylation of H2AX. Depsipeptide induced oxidative stress was confirmed to relate to a disturbance in reduction-oxidation (redox) reactions through inhibition of the transactivation of thioredoxin reductase (TrxR) in human cancer cells. Upon treatment with depsipeptide, p53 phosphorylation at threonine 18 (Thr18) was specifically induced. Furthermore, we also demonstrated that phosphorylation of p53 at Thr18 is required for p53 acetylation at lysine 373/382 and for p21 expression in response to depsipeptide treatment. Our results demonstrate that depsipeptide plays an anti-neoplastic role by generating ROS to elicit p53/p21 pathway activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号