首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
During foraging, societies of the polymorphic ant, Pheidole pallidula,display several collective patterns which differ in the ratio of recruited majors. The intensity of behavioral stimuli required to induce this majors' recruitment is determined by studying trail-laying and tactile invitations for the following two food recruitments: (I) the slow and weak recruitment of minors, without majors, to a pile of small, individually retrievable fruit flies and (2) the massive recruitment of both minors and majors to large, unretrievable cockroaches. The selective mobilization of majors only to large prey such as cockroaches is due both to their preferential invitation and to their higher behavioral threshold of response to recruiting stimuli. The experimental evidence of caste behavioral thresholds allow us to reconsider behavioral elasticity in the major caste as well as principles of division of labor in ant societies.  相似文献   

3.
Spatial distribution of ant workers and, notably their aggregation/segregation behaviour, is a key-element of the colony social organization contributing to the efficiency of task performance and division of labour. In polymorphic species, specialized worker castes notably differ in their intrinsic aggregation behaviour. In this context, knowing the preponderant role of minors in brood care, we investigate how a stimulus such as brood can influence the spatial patterns of Pheidole pallidula worker castes. In a homogeneous area without brood, it was shown that minors display only a low level of aggregation while majors form large clusters in the central area. Here we find out that these aggregation patterns of both minors and majors can be deeply influenced by the presence of brood. For minors, it nucleates or enhances the formation of a large stable cluster. Such high sensitivity of minors to brood stimuli fits well with their role as main brood tenders in the colony. For majors, interattraction between individuals still remains the prevailing aggregation factor while brood strongly influences the localisation of their cluster. We discuss how the balance between interattraction and sensitivity to environmental stimuli determines the mobility of each worker castes and, consequently, the availability of minors and majors to participate in everyday colony tasks. Moreover, we will evoke the functional value of majors’ cluster location close to the brood, namely with respect to social regulation of the colony caste ratio. Received 30 May 2005; revised 11 January 2006; accepted 13 January 2006.  相似文献   

4.
Workers of the Florida harvester ant (Pogonomyrmex badius), the only North American Pogonomyrmex with a polymorphic worker caste, produce males when colonies are orphaned. In this study,we assessed the reproductive potential of workers of each caste group, minors and majors, in the presence and absence of the queen, and tested whether males produced in natural queen-right colonies are derived from workers. Worker size was positively correlated with ovariole number such that major workers had approximately double the number of ovarioles as minor workers. The number of vitellogenic oocytes, a measure of reproductive potential, was greater in major compared to minor workers and increased in both worker castes when queens were removed. Major workers have greater reproductive potential than minors although they represent a minority within the colony (~5% of workers are majors). Worker produced eggs were visible in colonies 28 – 35 days after queen removal. This time lag, from queen removal to egg production, is similar to other ants and bees. Though workers are capable of producing viable eggs, we found no evidence that they do so in queen-right colonies, suggesting that worker reproduction is controlled via some social mechanism (self restraint, policing, or inhibition). This result supports predictions of kin selection theory – that due to multiple mating by the queen workers are more related to queen-produced males than most worker-produced males and should thus favor reproduction by the queen and inhibit reproduction by other workers. Received 25 January 2007; revised 1 May 2007; accepted 21 May 2007.  相似文献   

5.
An organism's morphology is constrained by its evolutionary history and the need to meet a variety of potentially competing functions. The ant genus Pheidole is the most species‐rich ant genus and almost every species has a dimorphic worker caste (a few are trimorphic). This separation of workers into two developmentally distinct subcastes (smaller minors and larger majors with distinctively large heads) may partially release individuals from functional constraints on morphology, making Pheidole an ideal genus for addressing questions on the evolution of morphology in relation to ecological specialization. Major workers can perform a variety of tasks, although they are usually specialized for defence, as well as food retrieval and processing. Pheidole species vary in their diet, although many species gather seeds. The major workers mill the seeds using large jaws powered by mandible closer muscles that occupy a large proportion of the head cavity. In the present study, we examined the relationship between seed‐harvesting and morphology in Pheidole, hypothesizing that majors of seed‐harvesting species would have larger heads relative to non‐seed‐harvesters to accommodate the powerful mandibular muscles needed to mill seeds. By taking a phylogenetically controlled comparative approach, we found that majors of seed‐associated Pheidole did not have larger heads (width and length) than majors of non‐seed‐harvesting species. However, the head length of minors (and to a lesser extent head width) was smaller in seed‐harvesters. Additionally, we found the difference in head size between majors and minors was greater in seed‐harvesting species. These morphological differences in diet, however, were not related to changes in the rate of evolution in either seed‐harvesting or non‐seed‐harvesting lineages. These findings suggest that the morphologies of worker subcastes can evolve independently of each other, allowing colonies with polymorphic workers to specialize on new resources or tasks in ways not possible in monomorphic species.  相似文献   

6.
Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.  相似文献   

7.
The prevalence and impact of a specialized microfungal parasite (Escovopsis) that infects the fungus gardens of leaf-cutting ants was examined in the laboratory and in the field in Panama. Escovopsis is a common parasite of leaf-cutting ant colonies and is apparently more frequent in Acromyrmex spp. gardens than in gardens of the more phylogenetically derived genus Atta spp. In addition, larger colonies of Atta spp. appear to be less frequently infected with the parasite. In this study, the parasite Escovopsis had a major impact on the success of this mutualism among ants, fungi, and bacteria. Infected colonies had a significantly lower rate of fungus garden accumulation and produced substantially fewer workers. In addition, the extent of the reduction in colony growth rate depended on the isolate, with one isolate having a significantly larger impact than two others, suggesting that Escovopsis has different levels of virulence. Escovopsis is also spatially concentrated within parts of ant fungus gardens, with the younger regions having significantly lower rates of infection as compared to the older regions. The discovery that gardens of fungus-growing ants are host to a virulent pathogen that is not related to any of the three mutualists suggests that unrelated organisms may be important but primarily overlooked components of other mutualistic associations.  相似文献   

8.
Social organization enables leaf-cutting ants to keep appropriate micro-ecological nest conditions for the fungus garden (their main food), eggs, larvae and adults. To maintain stability while facing changing conditions, individual ants must perceive destabilising factors and produce a proper behavioral response. We investigated behavioral responses to experimental dehydration in leaf-cutting ants to verify if task specialization exists, and to quantify the ability of ant sub-colonies for water management. Our setup consisted of fourteen sub-colonies, ten of which were randomly assigned to different levels of experimental dehydration with silica gel, whereas the remaining four were controls. The ten experimental sub-colonies were split into two groups, so that five of them had access to water. Diverse ant morphs searched for water in dehydrated colonies, but mainly a caste of small ants collected water after sources had been discovered. Size specialization for water collection was replicable in shorter experiments with three additional colonies. Ants of dehydrated colonies accumulated leaf-fragments on the nest entrance, and covering the fungus garden. Behaviors that may enhance humidity within the nests were common to all dehydration treatments. Water availability increased the life span of dehydrated colonies.  相似文献   

9.
10.
Nearly all species in the ant genus Pheidole have dimorphic workers, with distinct small minors and larger soldiers. The size range of both castes is typically narrow. Just seven described species are soldier-polymorphic, with a broad soldier size range. Here, we characterize worker caste allocation and demography in the soldier-polymorphic P. obtusospinosa, P. rhea, and P. tepicana, and the dimorphic P. spadonia for comparison. The head allometry of soldiers in soldier-polymorphic species is strongly positive and that of dimorphic species is negative. Among soldier-polymorphic species, the soldier castes differ from each other in the degree of positive allometry. In addition, they differ in the number of size modes: P. obtusospinosa and P. rhea have two and P. tepicana has one. During colony ontogeny, P. obtusospinosa first has one mode and develops the second mode much later, while P. rhea produces multiple modes throughout. We also characterize worker caste systems based on the biomass allocation. For all three soldier-polymorphic species, the majority of soldiers are small soldiers. Pheidole obtusospinosa and P. rhea allocate roughly equal biomass to the two soldier classes, while P. tepicana allocates little to supersoldiers based on both biomass and caste ratio. These findings illustrate the interplay among caste ratios, biomass allocation, size frequency distributions, and allometry in the evolution of different worker caste systems. We conclude that soldier-polymorphic species may have evolved convergently in response to broad-scale factors, but differences among them suggest selection pressures in small-scale environments have been different.  相似文献   

11.
Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus‐growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.  相似文献   

12.
Leaf‐cutting ants maintain a symbiotic relationship with basidiomycetous fungi cultivated as food. Here, we profiled the non‐symbiotic filamentous fungi in laboratory nests of Atta sexdens rubropilosa submitted to treatments with different toxic bait formulations (using the insecticide sulfluramide as the active ingredient). After treatment, several filamentous fungi were found in different nest compartments. Culture‐dependent techniques recovered a total of 93 fungal isolates comprising 10 genera, 11 species and four unidentified fungi. The genus Penicillium was prevalent in both control and insecticide treatments. Overall, the majority of fungal isolates obtained in this study are commonly found in soil. Escovopsis spp., the specialized parasite of the ant‐fungus mutualism was only recorded in the fungus gardens of nests submitted to the toxic treatments. Moreover, no correlation was found regarding the presence of fungi in the different nest compartments (chi‐square, P > 0.4182). This study reveals that Escovopsis spp. is not the only fungus to overgrow the fungus garden of debilitated nests, thus adding more evidence on the possible negative impacts of such alien fungi. As suggested by previous studies, fast‐growing filamentous fungi likely overgrow the fungus garden in such conditions.  相似文献   

13.
Social insects employ many types of defense mechanisms against parasites and pathogens because they face high risks from infections due to crowded living conditions with closely related nestmates. Grooming behavior, including self-grooming and allogrooming, can remove fungal spores on the cuticles of social insects and may be a behavioral defense mechanism to improve survivorship. Allogrooming between nestmates has been predicted to be especially important as a defense against ectoparasites. However, little is known about the plasticity of grooming behavior in susceptible environments. Here, we show that the ant Lasius japonicus increases the frequency of allogrooming rather than self-grooming to improve survivorship against the entomopathogenic fungus Metarhizium anisopliae. We found that increasing fungal dosage and ant group size influenced the plasticity of grooming behavior. Additionally, the survival rate of the ants over 30 days improved with increased group size. Our results suggest that social insects opt for altruistic behavior to prevent the spread of diseases. This study illustrates how ants maintain colonies through grooming behavior in the presence of fungal spores.  相似文献   

14.
Understanding how a single genome creates and maintains distinct phenotypes is a central goal in evolutionary biology. Social insects are a striking example of co‐opted genetic backgrounds giving rise to dramatically different phenotypes, such as queen and worker castes. A conserved set of molecular pathways, previously envisioned as a set of ‘toolkit’ genes, has been hypothesized to underlie queen and worker phenotypes in independently evolved social insect lineages. Here, we investigated the toolkit from a developmental point of view, using RNA‐Seq to compare caste‐biased gene expression patterns across three life stages (pupae, emerging adult and old adult) and two female castes (queens and workers) in the ant Formica exsecta. We found that the number of genes with caste‐biased expression increases dramatically from pupal to old adult stages. This result suggests that phenotypic differences between queens and workers at the pupal stage may derive from a relatively low number of caste‐biased genes, compared to higher number of genes required to maintain caste differences at the adult stage. Gene expression patterns were more similar among castes within developmental stages than within castes despite the extensive phenotypic differences between queens and workers. Caste‐biased expression was highly variable among life stages at the level of single genes, but more consistent when gene functions (gene ontology terms) were investigated. Finally, we found that a large part of putative toolkit genes were caste‐biased at least in some life stages in F. exsecta, and the caste‐biases, but not their direction, were more often shared between F. exsecta and other ant species than between F. exsecta and bees. Our results indicate that gene expression should be examined across several developmental stages to fully reveal the genetic basis of polyphenisms.  相似文献   

15.
Division of labour is a key factor in the ecological success of social insects. Groups of individuals specializing on a particular behaviour are known as castes and are usually distinguished by morphology or age. Physiology plays a key role in both these types of caste, in either the developmental physiology which determines morphology, or the temporal changes in physiology over an insect’s life. Physiological correlates of morphological or temporal caste include differences in gland structure, secretory products, leanness, neuroanatomy and neurochemistry. However, purely physiological castes could also occur. Physiological castes are discrete groups of same-age same-size individuals with particular physiological competencies, or groups of individuals with similar physiology crossing age or size groups. A stable physiological caste occurs in the monomorphic Pharaoh’s ant, where some ants can detect old pheromone trails and retain this specialization over time. These ants differ physiologically from other workers, and the differences arise before eclosion. More temporary physiological castes occur in the ant Ectatomma where brood care specialists have more developed ovarioles than other same-aged workers, and in the honeybee where nurses, wax-workers and soldiers all differ physiologically from same-aged nestmates. Physiology is an important aspect of caste, not only in its contribution to age-related and morphological castes, but also in its own right as a caste grouping factor. While age and morphological differences make caste structures accessible for study, more cryptic physiological castes may play just as important a role in division of labour. Received 19 December 2007; revised 24 July and 18 September 2008; accepted 19 September 2008.  相似文献   

16.
17.
Summary. The interplay of genetic and environmental factors in the determination of social insect castes has long intrigued biologists. Though an overwhelming majority of studies establish that factors such as nutrition, pheromones and temperature determine the developmental fate of worker larvae, genetic components have recently been shown to play a role in the determination of morphological worker castes in leaf-cutting ants. Here we demonstrate that the determination of worker castes in the strongly polyandrous Florida harvester ant, Pogonomyrmex badius, has a genetic component. The overall distribution of caste members among patrilines in our study colonies is significantly different from the intracolonial caste ratio. Though this effect was not apparent in all colonies, our results suggest that workers of different patrilines in P. badius differ significantly in their propensities to develop into a certain worker caste. This genetic basis of worker polymorphism may go unnoticed in many social hymenopterans because of their low intracolonial genetic diversity due to monogamous colony structure. The worker polymorphism of P. badius is a taxonomic isolate and presumably a young trait in the genus. Therefore, a common genetic component of the determination of morphological and behavioral worker castes in social insects might be farranging taxonomically and may even be based on a genetic machinery inherent to all hymenopterans, but dormant in most.Received 3 May 2004; revised 27 October 2004; accepted 8 November 2004.  相似文献   

18.
Summary This study highlights the influence of sampling size on the interpretation of between castes division of labour in the dimorphic ant genus Pheidole. We show that data analyses based on rarefaction curves provide better estimates of caste repertoire sizes. Weighted observations of the two worker castes of Pheidole pallidula reveals that the behavioural repertoire of majors is far more extended than expected. Indeed, majors are not restricted to defence, seed milling or food storage but can additionally participate to within nest activities by carrying out 69% of the minors behavioural repertoire including brood care. Besides, we show that inter-specific variation in the size of majors behavioural repertoire could simply result from differences in the number of majors observed. Therefore, the ergonomic prediction that the repertoire size of one caste should be correlated to its numerical representation in the colony needs to be re-examined considering between-castes differences in the sampling effort.Received 23 April 2003; revised 28 July 2003; accepted 1 August 2003.  相似文献   

19.
Microfungal “Weeds” in the Leafcutter Ant Symbiosis   总被引:1,自引:0,他引:1  
Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae) as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens. Evolutionary theory predicts that the low genetic diversity in monocultures should render ant gardens susceptible to a wide range of diseases, and additional parasites with roles similar to that of Escovopsis are expected to exist. We profiled the diversity of cultivable microfungi found in 37 nests from ten Acromyrmex species from Southern Brazil and compared this diversity to published surveys. Our study revealed a total of 85 microfungal strains. Fusarium oxysporum and Escovopsis were the predominant species in the surveyed gardens, infecting 40.5% and 27% of the nests, respectively. No specific relationship existed regarding microfungal species and ant-host species, ant substrate preference (dicot versus grass) or nesting habit. Molecular data indicated high genetic diversity among Escovopsis isolates. In contrast to the garden parasite, F. oxysporum strains are not specific parasites of the cultivated fungus because strains isolated from attine gardens have similar counterparts found in the environment. Overall, the survey indicates that saprophytic microfungi are prevalent in South American leafcutter ants. We discuss the antagonistic potential of these microorganisms as “weeds” in the ant–fungus symbiosis.  相似文献   

20.

Background

Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants'' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies.

Methodology/Principal Findings

Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly γ-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source.

Conclusions/Significance

Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation gradient created by ant behavior, specifically their fungiculture and waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号